15 resultados para Ferromagnetic nanoclusters

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The objective of this study was to assess the discriminative power of dual-energy computed tomography (DECT) versus single-energy CT (SECT) to distinguish between ferromagnetic and non-ferromagnetic ballistic projectiles to improve safety regarding magnetic resonance (MR) imaging studies in patients with retained projectiles. MATERIALS AND METHODS Twenty-seven ballistic projectiles including 25 bullets (diameter, 3-15 mm) and 2 shotgun pellets (2 mm each) were examined in an anthropomorphic chest phantom using 128-section dual-source CT. Data acquisition was performed with tube voltages set at 80, 100, 120, and 140 kV(p). Two readers independently assessed CT numbers of the projectile's core on images reconstructed with an extended CT scale. Dual-energy indices (DEIs) were calculated from both 80-/140-kV(p) and 100-/140-kV(p) pairs; receiver operating characteristics curves were fitted to assess ferromagnetic properties by means of CT numbers and DEI. RESULTS Nine (33%) of the projectiles were ferromagnetic; 18 were nonferromagnetic (67%). Interreader and intrareader correlations of CT number measurements were excellent (intraclass correlation coefficients, >0.906; P<0.001). The DEI calculated from both 80/140 and 100/140 kV(p) were significantly (P<0.05) different between the ferromagnetic and non-ferromagnetic projectiles. The area under the curve (AUC) was 0.75 and 0.8 for the tube voltage pairs of 80/140 and 100/140 kV(p) (P<0.05; 95% confidence interval, 0.57-0.94 and 0.62-0.97, respectively) to differentiate between the ferromagnetic and non-ferromagnetic ballistic projectiles; which increased to 0.83 and 0.85 when shotgun pellets were excluded from the analysis. The AUC for SECT was 0.69 and 0.73 (80 and 100 kV[p], respectively). CONCLUSIONS Measurements of DECT combined with an extended CT scale allow for the discrimination of projectiles with non-ferromagnetic from those with ferromagnetic properties in an anthropomorphic chest phantom with a higher AUC compared with SECT. This study indicates that DECT may have the potential to contribute to MR safety and allow for MR imaging of patients with retained projectiles. However, further studies are necessary before this concept may be used to triage clinical patients before MR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation into the physical consequences of including a Jahn-Teller distorted Cu(II) ion within an antiferromagnetically coupled ring, [R(2)NH(2)][Cr(7)CuF(8)((O(2)C(t)Bu)(16))] is reported. Inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) spectroscopic data are simulated using a microscopic spin Hamiltonian, and show that the two Cr-Cu exchange interactions must be inequivalent. One Cr-Cu exchange is found to be antiferromagnetic and the other ferromagnetic. The geometry of the Jahn-Teller elongation is deduced from these results, and shows that a Jahn-Teller elongation axis must lie in the plane of the Cr(7)Cu wheel; the elongation is not observed by X-ray crystallography, due to positional disorder of the Cu site within the wheel. An electronic structure calculation confirms the structural distortion of the Cu site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to simulate direct-digital cephalometric procedures and to record the head movements of probands. This study was prompted by the Committee for Insurance Matters of the Swiss National Invalidity Insurance which does not accept scanned digital cephalometric radiographs as a basis for its decisions. The reason for this is the required scanning time of several seconds during which even slight head movements can lead to kinetic blurring and landmark displacement. Incorrect angular measurements may result. By means of a Sirognathograph and a cephalostat of non-ferromagnetic material, the head movements of a total of 264 subjects were recorded in three dimensions, with a scanning time of up to 25 seconds. In a second series, the influence of a chin support to reduce head movements was also tested. The results of the first series of tests showed that, with an increasing scan time, movements became greater, mostly in the sagittal plane, and that maximum displacements could occur already at the start of the recording. With a scan time of 10 seconds the median movement amplitude in the vertical dimension was 2.14 mm. The second series of tests revealed a significant reduction in head movements in all dimensions owing to an additional stabilizing chin support. To minimize head movements, scanning times must be reduced and additional head stabilizing elements together with existing ones are necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet LiErF4 have been identified. Below x = 0.86, an embedded spin-glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x = 0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x ∼ 0.3–0.1, an antiferromagnetically coupled spin glass occurs. A reduction of TC(x) for the ferromagnet is observed which disobeys the mean-field predictions that worked for LiHoxY1-xF4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit, and their long axis, the crystallographic c axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock’s AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse orthopyroxene and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clinopyroxene and orthopyroxene. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45° to the c axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds:  [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using molecular building blocks to self-assemble lattices supporting long-range magnetic order is currently an active area of solid-state chemistry. Consequently, it is the realm of supramolecular chemistry that synthetic chemists are turning to in order to develop techniques for the synthesis of structurally well-defined supramolecular materials. In recent years we have investigated the versatility and usefulness of two classes of molecular building blocks, namely, tris-oxalato transition-metal (M. Pilkington and S. Decurtins, in “Magnetoscience—From Molecules to Materials,” Wiley–VCH, 2000), and octacyanometalate complexes (Pilkington and Decurtins, Chimia 54, 593 (2001)), for applications in the field of molecule-based magnets. Anionic, tris-chelated oxalato building blocks are able to build up two-dimensional honeycomb-layered structural motifs as well as three-dimensional decagon frameworks. The discrimination between the crystallization of the two- or three-dimensional structures relies on the choice of the templating counterions (Decurtins, Chimia 52, 539 (1998); Decurtins et al. Mol. Cryst. Liq. Cryst. 273, 167 (1995); New J. Chem. 117 (1998)). These structural types display a range of ferro, ferri, and antiferromagnetic properties (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials”). Octacyanometalate building blocks self-assemble to afford two new classes of cyano-bridged compounds namely, molecular clusters and extended three dimensional networks (J. Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000); Pilkington et al., in preparation). The molecular cluster with a MnII9MoV6 core has the highest ground state spin value, S=51/2, reported to-date (Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000)). In the high-temperature regime, the magnetic properties are characterized by ferromagnetic intracluster coupling. In the magnetic range below 44 K, the magnetic cluster signature is lost as possibly a bulk behavior starts to emerge. The three-dimensional networks exhibit both paramagnetic and ferromagnetic behavior, since the magnetic properties of these materials directly reflect the electronic configuration of the metal ion incorporated into the octacyanometalate building blocks (Pilkington et al., in preparation). For both the oxalate- and cyanide-bridged materials, we are able to manipulate the magnetic properties of the supramolecular assemblies by tuning the electronic configurations of the metal ions incorporated into the appropriate molecular building blocks (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials,” Chimia 54, 593 (2000)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of molecule-based magnets is a relatively new branch of chemistry, which involves the design and study of molecular compounds that exhibit a spontaneous magnetic ordering below a critical temperature, Tc. One major goal involves the design of materials with tuneable Tc's for specific applications in memory storage devices. Molecule-based magnets with high magnetic ordering temperatures have recently been obtained from bimetallic and mixed-valence transition metal μ-cyanide complexes of the Prussian blue family. Since the μ-cyanide linkages permit an interaction between paramagnetic metal ions, cyanometalate building blocks have found useful applications in the field of molecule-based magnets. Our work involves the use of octacyanometalate building blocks for the self-assembly of two new classes of magnetic materials namely, high-spin molecular clusters which exhibit both ferromagnetic intra- and intercluster coupling, and specific extended network topologies which show long-range ferromagnetic ordering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in deformed rocks. To do so quantitatively, it is necessary to quantify the intrinsic magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in mafic igneous and metamorphic rocks and often define rock texture due to their general prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to felsic igneous rocks and in some metamorphic rock types, because they have a high Fe concentration and they can develop a strong crystallographic preferred orientation. In this study, the AMS is characterized in 28 single crystals and I crystal aggregate of compositionally diverse clino- and ortho-amphiboles. High-field methods were used to isolate the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic inclusions that often occur in amphibole crystals. Laue imaging, laser ablation-inductively coupled plasma-mass spectrometry, and Mossbauer spectroscopy were performed to relate the magnetic anisotropy to crystal structure and Fe concentration. The minimum susceptibility is parallel to the crystallographic a*-axis and the maximum susceptibility is generally parallel to the crystallographic b-axis in tremolite, actinolite, and hornblende. Gedrite has its minimum susceptibility along the a-axis, and maximum susceptibility aligned with c. In richterite, however, the intermediate susceptibility is parallel to the b-axis and the minimum and maximum susceptibility directions are distributed in the a-c plane. The degree of anisotropy, k', increases generally with Fe concentration, following a linear trend: k' = 1.61 x 10(-9) Fe - 1.17 x 10(-9) m(3)/kg. Additionally, it may depend on the Fe2+/Fe3+ ratio. For most samples, the degree of anisotropy increases by a factor of approximately 8 upon cooling from room temperature to 77 K. Fen-oactinolite, one pargasite crystal and riebeckite show a larger increase, which is related to the onset of local ferromagnetic (s.l.) interactions below about 100 K. This comprehensive data set increases our understanding of the magnetic structure of amphiboles, and it is central to interpreting magnetic fabrics of rocks whose AMS is controlled by amphibole minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data:  1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feldspars are the most abundant rock-forming minerals in the Earth’s crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10−9 m3 kg−1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on a synthetic strategy, extended anionic, homo and bimetallic oxalato-bridged transition-metal compounds with two (2D) and three-dimensional (3D) connectivities can be synthesized and crystallized. Thereby, the choice of the templating counterions will determine the crystal chemistry. Since the oxalato bridge is a mediator for both antiferro and ferromagnetic interactions between similar and dissimilar metal ions, long-range magnetic ordering will occur. Examples of the determination of magnetic structures in 2D and 3D compounds by means of elastic neutron scattering methods will be discussed. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform density functional calculations to investigate the structure of the intermetallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic phase at 350 K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic-like AFM structure that is reached from the ground-state body-centered-cubic-like AFM structure by following the epitaxial Bain path. We show that the behavior is well described using nonlinear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.