23 resultados para FIXED-PARTIAL DENTURES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This ex vivo pilot study tested the influence of defect extension and quartz-fiber post placement (QFP) on the ex vivo survival rate and fracture resistance of root-treated upper central incisors served as abutments for zirconia 2-unit cantilever fixed partial dentures (2U-FPDs) exposed to 10 years of simulated clinical function.
Resumo:
PURPOSE: The aim of the present clinical trial was to evaluate the 12-month success rate of titanium dental implants placed in the posterior mandible and immediately loaded with 3-unit fixed partial dentures. MATERIALS AND METHODS: Patients with missing mandibular premolars and molars were enrolled in this study. To be included in the study, the implants had to show good primary stability. Implant stability was measured with resonance frequency analysis using the Osstell device (Integration Diagnostics). Implants were included in the study when the stability quotient (ISQ) exceeded 62. Clinical measurements, such as width of keratinized tissue, ISQ, and radiographic assessment of peri-implant bone crest levels, were performed at baseline and at the 12-month follow-up. The comparison between the baseline and the 12-month visits was performed with the Student t test for paired data (statistically significant at a level of alpha = 0.05). RESULTS: Forty implants with a sandblasted, large grit, acid-etched (SLA) surface (Straumann) were placed in 20 patients. At 12 months, only 1 implant had been lost because of an acute infection. The remaining 39 implants were successful, resulting in a 1-year success rate of 97.5%. Neither peri-implant bone levels, measured radiographically, nor implant stability changed significantly from baseline to the 12-month follow-up (P > .05). DISCUSSION: The immediate functional loading of implants placed in this case series study resulted in a satisfactory success rate. CONCLUSION: The findings from this clinical study showed that the placement of SLA transmucosal implants in the mandibular area and their immediate loading with 3-unit fixed partial dentures may be a safe and successful procedure.
Resumo:
The present paper deals with the double crown technique in removable prosthodontics. New ceramic materials like zirconia are increasingly used in combination with CAD/CAM technologies for framework fabrication of fixed prosthesis, tooth- or implant-supported. However, zirconia is also a newly accepted material in removable prosthodontics. It replaces gold alloys for the fabrication of primary telescopic crowns. The Galvanoforming technology is preferably used to fabricate the secondary crowns. The combination of both techniques and materials results in a prosthetic reconstruction of high quality, optimum fit and good biocompatibility.
Resumo:
On one side, prosthodontic reconstructions compensate for the sequelae of negative changes in the oral cavity; on the other side, they often enhance or accelerate them. As a consequence of negative changes in the oral cavity over time, treatment planning for RPDs becomes highly complex. A set of reliable criteria is necessary for decision-making and problem management It appears that the majority of published data on RPDs does not depict high effectiveness of this treatment modality. From a strict point of view of evidence-based dentistry, the level of evidence is low if not missing for RPDs. Randomized controlled trials on RPDs are difficult to design, they are not feasible for some questions due to the complexity of the material, or may remain without clinical relevance. The literature rarely gives information on the denture design, tooth selection, and management of the compromised structural integrity of teeth. So far treatment outcomes with RPDs must be considered under the aspect of bias due to the bias in indication and patient selection for RPDs. Better clinical models should be elaborated with more stringent concepts for providing RPDs. This encompasses: risk analysis and patient assessment, proper indications for maintenance or extraction of teeth, strategic placement of implants, biomechanical aspects, materials, and technology. Although there is a tendency to offer fixed prostheses to our patients, this might change again with demographic changes and with an increase in the ageing population, an increase in their reduced dentition, and low socioeconomic wealth in large parts of the world.
Resumo:
The aim of this study was to compare data on design and fabrication methods of removable partial dentures (RPDs) in two major cities in Greece. A questionnaire was sent to 150 randomly selected dental technicians. The participation rate was 79.3%. The anterior palatal strap, the lingual bar, and the Roach-type clasp arm designs were preferred. Half of the RPDs fabricated were retained using precision attachments. Differences between the two cities were observed in types of major maxillary connectors used, types of attachments and impression materials used, as well as the design of distal-extension RPDs. Postdoctoral education was found to have an impact on RPD fabrication. Despite the differences observed, design and fabrication of RPDs followed commonly used principles.
Resumo:
The aim of this research was to study the impact of loading on partial dentures within the supporting soft tissue with respect to different attachment techniques. A finite element model was developed to calculate the stress and strain distribution in this tissue. The model consisted of the left half of a mandible with three remaining teeth that had suffered an atrophy in the anterior region, and a partial denture over the toothless area that was connected at the left mandibular canine using an attachment system. Resulting stress/strain distributions are presented for different load cases using a commercially available prefabricated attachment system.
Resumo:
PURPOSE To assess the survival outcomes and reported complications of screw- and cement-retained fixed reconstructions supported on dental implants. MATERIALS AND METHODS A Medline (PubMed), Embase, and Cochrane electronic database search from 2000 to September 2012 using MeSH and free-text terms was conducted. Selected inclusion and exclusion criteria guided the search. All studies were first reviewed by abstract and subsequently by full-text reading by two examiners independently. Data were extracted by two examiners and statistically analyzed using a random effects Poisson regression. RESULTS From 4,324 abstracts, 321 full-text articles were reviewed. Seventy-three articles were found to qualify for inclusion. Five-year survival rates of 96.03% (95% confidence interval [CI]: 93.85% to 97.43%) and 95.55% (95% CI: 92.96% to 97.19%) were calculated for cemented and screw-retained reconstructions, respectively (P = .69). Comparison of cement and screw retention showed no difference when grouped as single crowns (I-SC) (P = .10) or fixed partial dentures (I-FDP) (P = .49). The 5-year survival rate for screw-retained full-arch reconstructions was 96.71% (95% CI: 93.66% to 98.31). All-ceramic reconstruction material exhibited a significantly higher failure rate than porcelain-fused-to-metal (PFM) in cemented reconstructions (P = .01) but not when comparing screw-retained reconstructions (P = .66). Technical and biologic complications demonstrating a statistically significant difference included loss of retention (P ≤ .01), abutment loosening (P ≤ .01), porcelain fracture and/or chipping (P = .02), presence of fistula/suppuration (P ≤ .001), total technical events (P = .03), and total biologic events (P = .02). CONCLUSIONS Although no statistical difference was found between cement- and screw-retained reconstructions for survival or failure rates, screw-retained reconstructions exhibited fewer technical and biologic complications overall. There were no statistically significant differences between the failure rates of the different reconstruction types (I-SCs, I-FDPs, full-arch I-FDPs) or abutment materials (titanium, gold, ceramic). The failure rate of cemented reconstructions was not influenced by the choice of a specific cement, though cement type did influence loss of retention.
Resumo:
PURPOSE: The aim of this study was to evaluate the 3-year success rates of wide-body implants with a regular- or wide-neck configuration and a sandblasted, large grit, acid-etched (SLA) surface. MATERIALS AND METHODS: A total of 151 implants were consecutively placed in posterior sites of 116 partially edentulous patients in a referral clinic at the School of Dental Medicine, University of Bern. All implants were restored with cemented crowns or fixed partial dentures after a healing period of 6 to 8 weeks (for implants placed without simultaneous bone augmentation) or 10 to 14 weeks (for implants with simultaneous bone augmentation). All patients were recalled 36 months following implant placement for a clinical and radiographic examination. RESULTS: One implant failed to integrate during healing, and 11 implants were lost to follow-up and considered dropouts. The remaining 139 implants showed favorable clinical and radiographic findings and were considered successfully integrated at the 3-year examination. This resulted in a 3-year success rate of 99.3%. Radiographic evaluation of 134 implants indicated stability of the crestal bone levels: During the study period, the crestal bone level changed less than 0.5 mm for 129 implants. CONCLUSION: Successful tissue integration was achieved with wide-body implants with a regular or a wide-neck configuration and an SLA surface with high predictability. This successful tissue integration was well maintained for up to 3 years of follow-up.
Resumo:
OBJECTIVES: The aim of this prospective study was to evaluate the 5-year performance and success rate of titanium screw-type implants with the titanium plasma spray (TPS) or the sand-blasted, large grit, acid-etched (SLA) surface inserted in a two-stage sinus floor elevation (SFE) procedure in the posterior maxilla. MATERIAL AND METHODS: A total of 59 delayed SFEs were performed in 56 patients between January 1997 and December 2001, using a composite graft with autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) or synthetic porous beta-tricalcium phosphate (beta-TCP). After a healing period averaging 7.75 months, 111 dental implants were inserted. After an additional 8-14-week healing period, all implants were functionally loaded with cemented crowns or fixed partial dentures. The patients were recalled at 12 and 60 months for clinical and radiographic examination. RESULTS: One patient developed an acute infection in the right maxillary sinus after SFE and did not undergo implant therapy. Two of the 111 inserted implants had to be removed because of a developing atypical facial pain, and 11 implants were lost to follow-up and were considered drop-outs. The remaining 98 implants showed favorable clinical and radiographic findings at the 5-year examination. The peri-implant soft tissues were stable over time; the mean probing depths and mean attachment levels did not change during the follow-up period. The measurement of the bone crest levels (DIB values) indicated stability as well. Based on strict success criteria, all 98 implants were considered successfully integrated, resulting in a 5-year success rate of 98% (for TPS implants 89%, for SLA implants 100%). CONCLUSION: This prospective study assessing the performance of dental implants inserted after SFE demonstrated that titanium implants can achieve and maintain successful tissue integration with high predictability for at least 5 years of follow-up in carefully selected patients.
Resumo:
This case series reports on the use of nonsilica-based high-strength full ceramics for different prosthetic indications. Fifty-two consecutive patients received tooth- or implant-supported zirconia reconstructions during a 2-year period. The observation period for reexamination was 12 to 30 months. The most frequent indications were single crowns and short-span fixed partial dentures. A few implant superstructures were screw-retained, whereas all remaining restorations were cemented on natural teeth or zirconia implant abutments. Clinical examination included biologic (probing depths, bleeding on probing) and esthetic (Papilla Index) parameters, as well as technical complications. No implant was lost or caused any problems, but two teeth were lost after horizontal fracture. Overall, the periodontal parameters were favorable. Fractures of frameworks or implant abutments were not observed. Abutment-screw loosening occurred once for one premolar single crown. Furthermore, five implant crowns in the posterior region exhibited chipping of the porcelain veneering material. With regard to esthetics, no reconstructions were considered unacceptable, but three crowns were remade shortly after delivery. In this short-term study, it was observed that biologic, esthetic, and mechanical properties of zirconia were favorable, and the material could be used in various prosthetic indications on teeth or implants.
Resumo:
The indications for direct resin composite restorations are nowadays extended due to the development of modern resin materials with improved material properties. However, there are still some difficulties regarding handling of resin composite material, especially in large restorations. The reconstruction of a functional and individual occlusion is difficult to achieve with direct application techniques. The aim of the present publication was to introduce a new "stamp"-technique for placing large composite restorations. The procedure of this "stamp"-technique is presented by three typical indications: large single-tooth restoration, occlusal rehabilitation of a compromised occlusal surface due to erosions and direct fibre-reinforced fixed partial denture. A step-by-step description of the technique and clinical figures illustrates the method. Large single-tooth restorations can be built-up with individual, two- piece silicone stamps. Large occlusal abrasive and/or erosive defects can be restored by copying the wax-up from the dental technician using the "stamp"-technique. Even fiber-reinforced resin-bonded fixed partial dentures can be formed with this intraoral technique with more precision and within a shorter treatment time. The presented "stamp"-technique facilitates the placement of large restoration with composite and can be recommended for the clinical use.
Resumo:
OBJECTIVES The aim was to study the impact of the defect size of endodontically treated incisors compared to dental implants as abutments on the survival of zirconia two-unit anterior cantilever-fixed partial dentures (2U-FPDs) during 10-year simulation. MATERIALS AND METHODS Human maxillary central incisors were endodontically treated and divided into three groups (n = 24): I, access cavities rebuilt with composite core; II, teeth decoronated and restored with composite; and III as II supported by fiber posts. In group IV, implants with individual zirconia abutments were used. Specimens were restored with zirconia 2U-FPDs and exposed to two sequences of thermal cycling and mechanical loading. Statistics: Kaplan-Meier; log-rank tests. RESULTS During TCML in group I two tooth fractures and two debondings with chipping were found. Solely chippings occurred in groups II (2×), IV (2×), and III (1×). No significant different survival was found for the different abutments (p = 0.085) or FPDs (p = 0.526). Load capability differed significantly between groups I (176 N) and III (670 N), and III and IV (324 N) (p < 0.024). CONCLUSION Within the limitations of an in vitro study, it can be concluded that zirconia-framework 2U-FPDs on decoronated teeth with/without post showed comparable in vitro reliability as restorations on implants. The results indicated that restorations on teeth with only access cavity perform worse in survival and linear loading. CLINICAL RELEVANCE Even severe defects do not justify per se a replacement of this particular tooth by a dental implant from load capability point of view.
Resumo:
To systematically evaluate the existing evidence to answer the focused question: For a patient with a single tooth to be replaced, is the implant crown, based on economic considerations, preferred to a conventional fixed partial denture?
Resumo:
PURPOSE: The aim of this study was to analyze prosthetic maintenance in partially edentulous patients with removable prostheses supported by teeth and strategic implants. MATERIALS AND METHODS: Sixty patients with removable partial prostheses and combined tooth-implant support were identified within the time period from 1998 to 2006. One group consisted of 42 patients (planned group) with a reduced residual dentition and in need of removable partial dentures (RPDs) or overdentures in the maxilla and/or mandible. They were admitted consecutively for treatment. Due to missing teeth in strategic important positions, one or two implants were placed to improve symmetrical denture support and retention. The majority of residual teeth exhibited an impaired structural integrity and therefore were provided with root copings for denture retention. A few vital teeth were used for telescopic crowns. The anchorage system for the strategic implants was selected accordingly. A second group of 18 patients (repair group) wearing RPDs with the loss of one abutment tooth due to biologic or mechanical failure was identified. These abutment teeth were replaced by 21 implants, and patients continued to wear their original prostheses. The observation time for planned and repair groups was 12 months to 8 years. All patients followed a regular maintenance schedule. Technical or biologic complications with supporting teeth or implants and prosthetic service were registered regularly. RESULTS: Three maxillary implants were lost after loading and three roots with copings had to be removed. Biologic problems included caries and periodontal/peri-implant infection with a significantly higher incidence in the repair group (P < .05). Technical complications with the dentures were rather frequent in both groups, mostly related to the anchorage system (matrices) of root copings and implants. Maintenance and complications were observed more frequently in the first year after delivery of the denture than in the following 3 years (P < .05). No denture had to be remade. CONCLUSIONS: The placement of a few implants allows for maintaining a compromised residual dentition for support of RPDs. The combination of root and implant support facilitates treatment planning and enhances designing the removable denture. It also proves to be a practical rescue method. Technical problems with the anchorage system were frequent, particularly in the first year after delivery of the dentures.