11 resultados para Excel Tips
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To describe an ultrasonic surgical aspirator assisted disk fenestration technique in dogs. STUDY DESIGN: Descriptive cadaveric and prospective clinical study. ANIMALS: Fresh Beagle cadavers (n=5) and 10 chondrodystrophic dogs with thoracolumbar disk extrusion. METHODS: Cadaveric study: Intervertebral disks T12-L2 were fenestrated with the CUSA Excel in 5 Beagle cadavers, and fenestration efficacy assessed by morphologic examination of the completeness of fenestration and size of annulotomy. Clinical study: the affected intervertebral disk was fenestrated in 10 chondrodystrophic dogs treated by hemilaminectomy for thoracolumbar disk disease. Efficacy of fenestration was evaluated. RESULTS: Mean time necessary to perform CUSA assisted fenestration was 8 minutes (range, 5-10 minutes) for each disk in cadavers and patients. In cadaver spines, removal of the nucleus pulposus was complete in 11/15 disks. In 4 disks, remnants of nucleus pulposus material were observed on the contralateral side. Nuclear material was normal in 9/15 disks and showed evidence of chondroid degeneration on histopathologic examination in the 6 disks. Median annulotomy size was 3 mm. Clinically, no signs of early recurrence were observed and all dogs recovered uneventfully. CONCLUSIONS: CUSA assisted fenestration is a safe and efficient method of fenestration for removal of most of the nucleus pulposus through a limited annulotomy.
Resumo:
BACKGROUND The treatment of proximal humerus fractures in patients with poor bone quality remains a challenge in trauma surgery. Augmentation with polymethylmethacrylate (PMMA) cement is a possible method to strengthen the implant anchorage in osteoporotic bone and to avoid loss of reduction and reduce the cut-out risk. The polymerisation of PMMA during cement setting leads, however, to an exothermic reaction and the development of supraphysiological temperatures may harm the bone and cartilage. This study addresses the issue of heat development during augmentation of subchondrally placed proximal humerus plate screws with PMMA and the possible risk of bone and cartilage necrosis and apoptosis. METHODS Seven fresh frozen humeri from geriatric female donors were instrumented with the proximal humerus interlocking system (PHILOS) plate and placed in a 37°C water bath. Thereafter, four proximal perforated screws were augmented with 0.5 ml PMMA each. During augmentation, the temperatures in the subchondral bone and on the articular surface were recorded with K-type thermocouples. The measured temperatures were compared to threshold values for necrosis and apoptosis of bone and cartilage reported in the literature. RESULTS The heat development was highest around the augmented tips of the perforated screws and diminished with growing distance from the cement cloud. The highest temperature recorded in the subchondral bone reached 43.5°C and the longest exposure time above 42°C was 86s. The highest temperature measured on the articular surface amounted to 38.6°C and the longest exposure time above 38°C was 5 min and 32s. CONCLUSION The study shows that augmentation of the proximal screws of the PHILOS plate with PMMA leads to a locally limited development of supraphysiological temperatures in the cement cloud and closely around it. The critical threshold values for necrosis and apoptosis of cartilage and subchondral bone reported in the literature, however, are not reached. In order to avoid cement extravasation, special care should be taken in detecting perforations or intra-articular cracks in the humeral head.
Resumo:
The robotic approach in thoracic surgery has rapidly gained popularity in recent years. As with the introduction of any new technology, this warrants not only adaptation of the operative technique itself, but also the evolution of appropriate troubleshooting strategies. A selected number of helpful tips and technical procedural manoeuvres have been compiled to prevent intraoperative problems, as well as to overcome challenging situations that can arise during robotic lobectomies. In robotic surgery, as opposed to open surgery or video-assisted thoracic surgery, these tips serve an important purpose for the operating surgeon, as well as the entire surgical team involved in the procedure. All the assembled recommendations have proved their effectiveness and have been successfully used by the authors in many procedures. Furthermore, these manoeuvres have been found to be of great importance in the training and proctoring of thoracic surgeons, fellows and residents (bed-side assistants). This guide of clearly arranged tips and troubleshooting strategies offers surgeons a useful tool to overcome difficult situations in robotic lobectomy and preferably improve the reproducibility and safety of their procedures.