20 resultados para Everted intestinal sac model

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D(9k) double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice ( approximately 10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diagnosis of intestinal ischemia remains a clinical challenge. The aim of the present study was to use a metabolomic protocol to identify upregulated and downregulated small molecules (M(r) < 500) in the serum of mice with intestinal ischemia. Such molecules could have clinical utility when evaluated as biomarkers in human studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intestinal protozoan parasite Giardia lamblia causes diarrhoea in humans and animals. In the present study, we used the C57BL/6 inbred mouse model to assess the impact of a nematode (Trichinella spiralis) infection on the course of a G. lamblia (clone GS/M-83-H7) infection. Acute trichinellosis coincided with transient intestinal inflammation and generated an intestinal environment that strongly promoted growth of G. lamblia trophozoites although the local anti-Giardia immunoglobulin (Ig) A production was not affected. This increased G. lamblia infection intensity correlated with intestinal mast cell infiltration, mast cell degranulation, and total IgE production. Furthermore, a G. lamblia single-infection investigated in parallel also resulted in intestinal mast cell accumulation but severe infiltration was triggered in the absence of IgE. Recently, intestinal mast cells emerging during a G. lamblia infection were reported to be involved in those immunological mechanisms that control intestinal proliferation of the parasite in mice. This anti-giardial activity was assumed to be related to the capacity of mast cells to produce IL-6. However, this previous assumption was questioned by our present immunohistological findings indicating that murine intestinal mast cells, activated during a G. lamblia infection were IL-6-negative. In the present co-infection experiments, mast cells induced during acute trichinellosis were not able to control a concurrent G. lamblia infection. This observation makes it feasible that the T. spiralis infection created an immunological and physiological environment that superimposed the anti-giardial effect of mast cells and thus favoured intestinal growth of G. lamblia trophozoites in double-infected mice. Furthermore, our findings raise the possibility that intestinal inflammation e.g. as a consequence of a 'pre-existing' nematode infection is a factor which contributes to increased susceptibility of a host to a G. lamblia infection. The phenomenon of a 'pre-existing' nematode infection prior to a G. lamblia infection is a frequent constellation in endemic areas of giardiasis and may therefore have a direct impact on the epidemiological situation of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two maltase activities were associated with sucrase-isomaltase. Two remaining maltases, lacking other identifying activities, were named maltase-glucoamylase. These 4 activities are better described as alpha-glucosidases because they digest all linear starch oligosaccharides to glucose. Because confusion persists about the relative roles of these 6 enzymes, we ablated maltase-glucoamylase gene expression by homologous recombination in Sv/129 mice. We assayed the alpha-glucogenic activities of the jejunal mucosa with and without added recombinant pancreatic alpha-amylase, using a range of food starch substrates. Compared with wild-type mucosa, null mucosa or alpha-amylase alone had little alpha-glucogenic activity. alpha-Amylase amplified wild-type and null mucosal alpha-glucogenesis. alpha-Amylase amplification was most potent against amylose and model resistant starches but was inactive against its final product limit-dextrin and its constituent glucosides. Both sucrase-isomaltase and maltase-glucoamylase were active with limit-dextrin substrate. These mucosal assays were corroborated by a 13C-limit-dextrin breath test. In conclusion, the global effect of maltase-glucoamylase ablation was a slowing of rates of mucosal alpha-glucogenesis. Maltase-glucoamylase determined rates of digestion of starch in normal mice and alpha-amylase served as an amplifier for mucosal starch digestion. Acarbose inhibition was most potent against maltase-glucoamylase activities of the wild-type mouse. The consortium of 6 interactive enzymes appears to be a mechanism for adaptation of alpha-glucogenesis to a wide range of food starches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The objective of this study was to investigate the feasibility, outcomes, and amount of small intestinal submucosa (SIS) material needed for embolization of jugular vein (JV) in a swine and sheep model. Our hypothesis was that SIS would cause vein occlusion. MATERIALS AND METHODS: The external JVs (EJV) in swine (n = 6) and JVs in sheep (n = 6) were occluded with SIS fan-folded compressed strips. After percutaneous puncture of the peripheral portion of the EJV or JV, a TIPS set was used to exit their lumen centrally through the skin. The SIS strips were delivered into the isolated venous segment with a pull-through technique via a 10-Fr sheath. Follow-up venograms were done immediately after placement and at the time of sacrifice at 1 or 3 months. Gross examinations focused on the EJV or JV and their surrounding structures. Specimens were evaluated by histology. RESULTS: SIS strip(s) placement was successful in all cases, with immediate vein occlusion seen in 23 of 24 veins (95.8%). All EJVs treated with two strips and all JVs treated with three or four strips remained closed on 1- and 3-month follow-up venograms. Two EJVs treated with one strip and one JV treated with two strips were partially patent on venograms at 1 and 3 months. There has been one skin inflammatory reaction. Necropsies revealed excluded EJV or JV segments with SIS incorporation into the vein wall. Histology demonstrated various stages of SIS remodeling with fibrocytes, fibroblasts, endothelial cells, capillaries, and inflammatory cells. CONCLUSION: We conclude that EJV and JV ablation with SIS strips using percutaneous exit catheterization is feasible and effective in animal models. Further exploration of SIS as vein ablation material is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant and as a cofactor in many enzymatic reactions. Intestinal absorption and renal reabsorption of the vitamin is mediated by the epithelial apical L-ascorbic acid cotransporter SVCT1 (SLC23A1). We explored the molecular mechanisms of SVCT1-mediated L-ascorbic acid transport using radiotracer and voltage-clamp techniques in RNA-injected Xenopus oocytes. L-ascorbic acid transport was saturable (K(0.5) approximately 70 microM), temperature dependent (Q(10) approximately 5), and energized by the Na(+) electrochemical potential gradient. We obtained a Na(+)-L-ascorbic acid coupling ratio of 2:1 from simultaneous measurement of currents and fluxes. L-ascorbic acid and Na(+) saturation kinetics as a function of cosubstrate concentrations revealed a simultaneous transport mechanism in which binding is ordered Na(+), L-ascorbic acid, Na(+). In the absence of L-ascorbic acid, SVCT1 mediated pre-steady-state currents that decayed with time constants 3-15 ms. Transients were described by single Boltzmann distributions. At 100 mM Na(+), maximal charge translocation (Q(max)) was approximately 25 nC, around a midpoint (V(0.5)) at -9 mV, and with apparent valence approximately -1. Q(max) was conserved upon progressive removal of Na(+), whereas V(0.5) shifted to more hyperpolarized potentials. Model simulation predicted that the pre-steady-state current predominantly results from an ion-well effect on binding of the first Na(+) partway within the membrane electric field. We present a transport model for SVCT1 that will provide a framework for investigating the impact of specific mutations and polymorphisms in SLC23A1 and help us better understand the contribution of SVCT1 to vitamin C metabolism in health and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Patients taking immunosuppressants after transplantation may require intestinal surgery. Mycophenolate mofetil (MMF) has been found to impair the healing of colonic anastomoses in rats. This study examined whether insulin-like growth factor (IGF) I prevents MMF impairment of anastomotic healing. METHODS: Sixty-three rats were divided into three groups (MMF, MMF/IGF and control). Animals underwent a sigmoid colon anastomosis with a 6/0 suture, and were killed on days 2, 4 and 6 after surgery. Investigations included bursting pressure measurement, morphometric analysis, and assessment of mucosal proliferation by 5-bromo-2'-deoxyuridine and Ki67 immunohistochemistry of the anastomoses. RESULTS: The leak rate was three of 21, one of 20 and two of 20 in the MMF, MMF/IGF-I and control groups respectively. Anastomotic bursting pressures were significantly lower in the MMF group than in the control group on days 2 and 4, but there was no significant difference by day 6. Values in the MMF/IGF-I and control groups were similar. Colonic crypt depth was significantly reduced in MMF-treated animals on days 2 and 4, but this impairment was attenuated by IGF-I on day 4. Similarly, IGF-I reduced the negative impact of MMF on mucosal proliferation on days 2 and 6. CONCLUSION: Exogenous IGF-I improves some aspects of MMF-impaired anastomotic healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the headspace of most of the BDMs. The results suggest that volatile As species should be monitored in biogas digesters in order to assess risks to humans working in biogas plants and those utilizing the biogas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica subspecies I serovars are common bacterial pathogens causing diseases ranging from enterocolitis to systemic infections. Some serovars are adapted to specific hosts, whereas others have a broad host range. The molecular mechanisms defining the virulence characteristics and the host range of a given S. enterica serovar are unknown. Streptomycin pretreated mice provide a surrogate host model for studying molecular aspects of the intestinal inflammation (colitis) caused by serovar Typhimurium (S. Hapfelmeier and W. D. Hardt, Trends Microbiol. 13:497-503, 2005). Here, we studied whether this animal model is also useful for studying other S. enterica subspecies I serovars. All three tested strains of the broad-host-range serovar Enteritidis (125109, 5496/98, and 832/99) caused pronounced colitis and systemic infection in streptomycin pretreated mice. Different levels of virulence were observed among three tested strains of the host-adapted serovar Dublin (SARB13, SD2229, and SD3246). Several strains of host restricted serovars were also studied. Two serovar Pullorum strains (X3543 and 449/87) caused intermediate levels of colitis. No intestinal inflammation was observed upon infection with three different serovar Paratyphi A strains (SARB42, 2804/96, and 5314/98) and one serovar Gallinarum strain (X3796). A second serovar Gallinarum strain (287/91) was highly virulent and caused severe colitis. This strain awaits future analysis. In conclusion, the streptomycin pretreated mouse model can provide an additional tool to study virulence factors (i.e., those involved in enteropathogenesis) of various S. enterica subspecies I serovars. Five of these strains (125109, 2229, 287/91, 449/87, and SARB42) are subject of Salmonella genome sequencing projects. The streptomycin pretreated mouse model may be useful for testing hypotheses derived from this genomic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella typhimurium has emerged as a model pathogen that manipulates host cells in a complex fashion, thus causing disease. In humans, S. typhimurium causes acute intestinal inflammation. Intriguingly, type III secreted virulence proteins have a central role in this process. At the cellular level, the functions of these factors are well characterized; at present, animal models are required for elucidating how these factors trigger inflammatory disease in vivo. Calf infection models have been employed successfully and, recently, a mouse model was identified: in streptomycin-pretreated mice, S. typhimurium causes acute colitis. This mouse model provides a new avenue for research into acute intestinal inflammation because it enables the manipulation and dissection of both the bacterial and host contributions to the disease in unsurpassed detail.