38 resultados para Error impact analysis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A multi-model analysis of Atlantic multidecadal variability is performed with the following aims: to investigate the similarities to observations; to assess the strength and relative importance of the different elements of the mechanism proposed by Delworth et al. (J Clim 6:1993–2011, 1993) (hereafter D93) among coupled general circulation models (CGCMs); and to relate model differences to mean systematic error. The analysis is performed with long control simulations from ten CGCMs, with lengths ranging between 500 and 3600 years. In most models the variations of sea surface temperature (SST) averaged over North Atlantic show considerable power on multidecadal time scales, but with different periodicity. The SST variations are largest in the mid-latitude region, consistent with the short instrumental record. Despite large differences in model configurations, we find quite some consistency among the models in terms of processes. In eight of the ten models the mid-latitude SST variations are significantly correlated with fluctuations in the Atlantic meridional overturning circulation (AMOC), suggesting a link to northward heat transport changes. Consistent with this link, the three models with the weakest AMOC have the largest cold SST bias in the North Atlantic. There is no linear relationship on decadal timescales between AMOC and North Atlantic Oscillation in the models. Analysis of the key elements of the D93 mechanisms revealed the following: Most models present strong evidence that high-latitude winter mixing precede AMOC changes. However, the regions of wintertime convection differ among models. In most models salinity-induced density anomalies in the convective region tend to lead AMOC, while temperature-induced density anomalies lead AMOC only in one model. However, analysis shows that salinity may play an overly important role in most models, because of cold temperature biases in their relevant convective regions. In most models subpolar gyre variations tend to lead AMOC changes, and this relation is strong in more than half of the models.
Resumo:
Software dependencies play a vital role in programme comprehension, change impact analysis and other software maintenance activities. Traditionally, these activities are supported by source code analysis; however, the source code is sometimes inaccessible or difficult to analyse, as in hybrid systems composed of source code in multiple languages using various paradigms (e.g. object-oriented programming and relational databases). Moreover, not all stakeholders have adequate knowledge to perform such analyses. For example, non-technical domain experts and consultants raise most maintenance requests; however, they cannot predict the cost and impact of the requested changes without the support of the developers. We propose a novel approach to predicting software dependencies by exploiting the coupling present in domain-level information. Our approach is independent of the software implementation; hence, it can be used to approximate architectural dependencies without access to the source code or the database. As such, it can be applied to hybrid systems with heterogeneous source code or legacy systems with missing source code. In addition, this approach is based solely on information visible and understandable to domain users; therefore, it can be efficiently used by domain experts without the support of software developers. We evaluate our approach with a case study on a large-scale enterprise system, in which we demonstrate how up to 65 of the source code dependencies and 77% of the database dependencies are predicted solely based on domain information.
Resumo:
AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.
Resumo:
PURPOSE OF REVIEW Fever and neutropenia is the most common complication in the treatment of childhood cancer. This review will summarize recent publications that focus on improving the management of this condition as well as those that seek to optimize translational research efforts. RECENT FINDINGS A number of clinical decision rules are available to assist in the identification of low-risk fever and neutropenia however few have undergone external validation and formal impact analysis. Emerging evidence suggests acute fever and neutropenia management strategies should include time to antibiotic recommendations, and quality improvement initiatives have focused on eliminating barriers to early antibiotic administration. Despite reported increases in antimicrobial resistance, few studies have focused on the prediction, prevention, and optimal treatment of these infections and the effect on risk stratification remains unknown. A consensus guideline for paediatric fever and neutropenia research is now available and may help reduce some of the heterogeneity between studies that have previously limited the translation of evidence into clinical practice. SUMMARY Risk stratification is recommended for children with cancer and fever and neutropenia. Further research is required to quantify the overall impact of this approach and to refine exactly which children will benefit from early antibiotic administration as well as modifications to empiric regimens to cover antibiotic-resistant organisms.
Resumo:
Five desmosomal genes have been recently implicated in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) but the clinical impact of genetics remains poorly understood. We wanted to address the potential impact of genotyping.
Resumo:
Pathological complete response (pCR) to neoadjuvant treatment correlates with outcome in breast cancer. We determined whether characteristics of neoadjuvant therapy are associated with pCR. We used multi-level models, which accounted for heterogeneity in pCR across trials and trial arms, to analyze individual patient data from 3332 women included in 7 German neoadjuvant trials with uniform protocols. PCR was associated with an increase in number of chemotherapy cycles (odds ratio [OR] 1.2 for every two additional cycles; P = 0.009), with higher cumulative anthracycline doses (OR 1.6; P = 0.002), higher cumulative taxane doses (OR 1.6; P = 0.009), and with capecitabine containing regimens (OR 1.62; P = 0.022). Association of pCR with increase in number of cycles appeared more pronounced in hormone receptor (HR)-positive tumors (OR 1.35) than in HR-negative tumors (OR 1.04; P for interaction = 0.046). Effect of anthracycline dose was particularly pronounced in HER2-negative tumors (OR 1.61), compared to HER2-positive tumors (OR 0.83; P for interaction = 0.14). Simultaneous trastuzumab treatment in HER2-positive tumors increased odds of pCR 3.2-fold (P < 0.001). No association of pCR and number of trastuzumab cycles was found (OR 1.20, P = 0.39). Dosing characteristics appear important for successful treatment of breast cancer. Longer treatment, higher cumulative doses of anthracyclines and taxanes, and the addition of capecitabine and trastuzumab are associated with better response. Tailoring according to breast cancer phenotype might be possible: longer treatment in HR-positive tumors, higher cumulative anthracycline doses for HER2-negative tumors, shorter treatment at higher cumulative doses for triple-negative tumors, and limited number of preoperative trastuzumab cycles in HER2-positive tumors.
Resumo:
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Resumo:
Taking intraoperative frozen sections (FS) is a widely used procedure in oncologic surgery. However so far no evidence of an association of FS analysis and premalignant changes in the surgical margin exists. Therefore, the aim of this study was to evaluate the impact of FS on different categories of the final margins of squamous cell carcinoma (SCC) of the oral cavity and lips.
Resumo:
The aim of this study was to investigate treatment failure (TF) in hospitalised community-acquired pneumonia (CAP) patients with regard to initial antibiotic treatment and economic impact. CAP patients were included in two open, prospective multicentre studies assessing the direct costs for in-patient treatment. Patients received treatment either with moxifloxacin (MFX) or a nonstandardised antibiotic therapy. Any change in antibiotic therapy after >72 h of treatment to a broadened antibiotic spectrum was considered as TF. Overall, 1,236 patients (mean ± SD age 69.6 ± 16.8 yrs, 691 (55.9%) male) were included. TF occurred in 197 (15.9%) subjects and led to longer hospital stay (15.4 ± 7.3 days versus 9.8 ± 4.2 days; p < 0.001) and increased median treatment costs (€2,206 versus €1,284; p<0.001). 596 (48.2%) patients received MFX and witnessed less TF (10.9% versus 20.6%; p < 0.001). After controlling for confounders in multivariate analysis, adjusted risk of TF was clearly reduced in MFX as compared with β-lactam monotherapy (adjusted OR for MFX 0.43, 95% CI 0.27-0.68) and was more comparable with a β-lactam plus macrolide combination (BLM) (OR 0.68, 95% CI 0.38-1.21). In hospitalised CAP, TF is frequent and leads to prolonged hospital stay and increased treatment costs. Initial treatment with MFX or BLM is a possible strategy to prevent TF, and may thus reduce treatment costs.
Resumo:
This study sought to assess the impact of the SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score (SXscore) on clinical outcomes in patients undergoing percutaneous coronary intervention.
Resumo:
Urban agriculture is a phenomenon that can be observed world-wide, particularly in cities of devel- oping countries. It is contributing significantly to food security and food safety and has sustained livelihood of the urban and peri-urban low income dwe llers in developing countries for many years. Population increase due to rural-urban migration and natural - formal as well as informal - urbani- sation are competing with urban farming for available space and scarce water resources. A mul- titemporal and multisensoral urban change analysis over the period of 25 years (1982-2007) was performed in order to measure and visualise the urban expansion along the Kizinga and Mzinga valley in the south of Dar Es Salaam. Airphotos and VHR satellite data were analysed by using a combination of a composition of anisotropic textural measures and spectral information. The study revealed that unplanned built-up area is expanding continuously, and vegetation covers and agricultural lands decline at a fast rate. The validation showed that the overall classification accuracy varied depending on the database. The extracted built-up areas were used for visual in- terpretation mapping purposes and served as information source for another research project. The maps visualise an urban congestion and expansion of nearly 18% of the total analysed area that had taken place in the Kizinga valley between 1982 and 2007. The same development can be ob- served in the less developed and more remote Mzinga valley between 1981 and 2002. Both areas underwent fast changes where land prices still tend to go up and an influx of people both from rural and urban areas continuously increase the density with the consequence of increasing multiple land use interests.
Resumo:
Background The aim of this study is to analyse CDKN2A methylation using pyrosequencing on a large cohort of colorectal cancers and corresponding non-neoplastic tissues. In a second step, the effect of methylation on clinical outcome is addressed. Methods Primary colorectal cancers and matched non-neoplastic tissues from 432 patients underwent CDKN2A methylation analysis by pyrosequencing (PyroMarkQ96). Methylation was then related to clinical outcome, microsatellite instability (MSI), and BRAF and KRAS mutation. Different amplification conditions (35 to 50 PCR cycles) using a range of 0-100% methylated DNA were tested. Results Background methylation was at most 10% with ≥35 PCR cycles. Correlation of observed and expected values was high, even at low methylation levels (0.02%, 0.6%, 2%). Accuracy of detection was optimal with 45 PCR cycles. Methylation in normal mucosa ranged from 0 to >90% in some cases. Based on the maximum value of 10% background, positivity was defined as a ≥20% difference in methylation between tumor and normal tissue, which occurred in 87 cases. CDKN2A methylation positivity was associated with MSI (p = 0.025), BRAF mutation (p < 0.0001), higher tumor grade (p < 0.0001), mucinous histology (p = 0.0209) but not with KRAS mutation. CDKN2A methylation had an independent adverse effect (p = 0.0058) on prognosis. Conclusion The non-negligible CDKN2A methylation of normal colorectal mucosa may confound the assessment of tumor-specific hypermethylation, suggesting that corresponding non-neoplastic tissue should be used as a control. CDKN2A methylation is robustly detected by pyrosequencing, even at low levels, suggesting that this unfavorable prognostic biomarker warrants investigation in prospective studies.
Resumo:
Survival after surgical treatment using competing-risk analysis has been previously examined in patients with prostate cancer (PCa). However, the combined effect of age and comorbidities has not been assessed in patients with high-risk PCa who might have heterogeneous rates of competing mortality despite the presence of aggressive disease.