3 resultados para Emission permits auctionsj double auctions.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The generation of collimated electron beams from metal double-gate nanotip arrays excited by near infrared laser pulses is studied. Using electromagnetic and particle tracking simulations, we showed that electron pulses with small rms transverse velocities are efficiently produced from nanotip arrays by laser-induced field emission with the laser wavelength tuned to surface plasmon polariton resonance of the stacked double-gate structure. The result indicates the possibility of realizing a metal nanotip array cathode that outperforms state-of-the-art photocathodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.