16 resultados para Elliptic Equations
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples
Resumo:
The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that $v_2(\pi^+) < v_2(\pi^-)$ (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced $v_2$ splitting and its centrality dependence. We compare the results with the available experimental data.