20 resultados para Ecological processes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Species coexistence has been a fundamental issue to understand ecosystem functioning since the beginnings of ecology as a science. The search of a reliable and all-encompassing explanation for this issue has become a complex goal with several apparently opposing trends. On the other side, seemingly unconnected with species coexistence, an ecological state equation based on the inverse correlation between an indicator of dispersal that fits gamma distribution and species diversity has been recently developed. This article explores two factors, whose effects are inconspicuous in such an equation at the first sight, that are used to develop an alternative general theoretical background in order to provide a better understanding of species coexistence. Our main outcomes are: (i) the fit of dispersal and diversity values to gamma distribution is an important factor that promotes species coexistence mainly due to the right-skewed character of gamma distribution; (ii) the opposite correlation between species diversity and dispersal implies that any increase of diversity is equivalent to a route of “ecological cooling” whose maximum limit should be constrained by the influence of the third law of thermodynamics; this is in agreement with the well-known asymptotic trend of diversity values in space and time; (iii) there are plausible empirical and theoretical ways to apply physical principles to explain important ecological processes; (iv) the gap between theoretical and empirical ecology in those cases where species diversity is paradoxically high could be narrowed by a wave model of species coexistence based on the concurrency of local equilibrium states. In such a model, competitive exclusion has a limited but indispensable role in harmonious coexistence with functional redundancy. We analyze several literature references as well as ecological and evolutionary examples that support our approach, reinforcing the meaning equivalence between important physical and ecological principles.
Resumo:
A number of studies suggest that there could be a positive relationship between the productivity of a plant community and its floristic diversity. Besides, for grasslands, productivity is not the only desirable advantage. The Jena trials, constituting a large-scale and long-duration experiment, were set up to tackle these questions. In the plots of the Jena trials, the number of species varies from 1 to 60. Various sub-trials deal with the effects of the composition and the diversity of a pasture sward on its productivity, the diversity of certain organisms, and several ecological processes. The results from the first 6 years show clearly that there exist positive relationships between the number of species, the presence of legumes and/or the functional diversity on the one hand, and on the other the productivity, the resistance to encroachment by plants and to pathogenic fungi, and the cycles of nutrients. The positive effects of the floristic diversity on the processes at the scale of the eco-system are of importance to the agricultural production and to the general environmental impact.
Resumo:
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.
Resumo:
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.
Resumo:
1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.
Resumo:
In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present.
Resumo:
Land systems are increasingly influenced by distal connections: the externalities and unintended consequences of social and ecological processes which occur in distant locations, and the feedback mechanisms that lead to new institutional developments and governance arrangements. Economic globalization and urbanization accentuate these novel telecoupling relationships. The prevalence of telecoupling in land systems demands new approaches to research and analysis in land science. This chapter presents a working definition of a telecoupled system, emphasizing the role of governance and institutional change in telecoupled interactions. The social, institutional, and ecological processes and conditions through which telecoupling emerges are described. The analysis of these relationships in land science demands both integrative and diverse epistemological perspectives and methods. Such analyses require a focus on how the motivations and values of social actors relate to telecoupling processes, as well as on the mechanisms that produce unanticipated outcomes and feedback relationships among distal land systems.
Resumo:
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes.
Resumo:
The Centre for Development and Environment (CDE) at the University of Bern has long-standing experience in conducting research in mountain regions around the world. CDE considers mountain regions to be a crucial context for sustainable development. Together with its partners, CDE aims to generate in-depth contextual knowledge about the dynamic social, economic, and ecological processes in mountain regions and elsewhere, with a view to informing development practices, while at the global level it engages in activities that help bring together these regional insights with the goal of informing policy-making. In doing so, CDE addresses the specific challenges of sustainable development—in mountains and elsewhere.
Resumo:
Rapid speciation can occur on ecological time scales and interfere with ecological processes, resulting in species distribution patterns that are difficult to reconcile with ecological theory. The haplochromine cichlids in East African lakes are an extreme example of rapid speciation. We analyse the causes of their high speciation rates. Various studies have identified disruptive sexual selection acting on colour polymorphisms that might cause sympatric speciation. Using data on geographical distribution, colouration and relatedness from 41 species endemic to Lake Victoria, we test predictions from this hypothesis. Plotting numbers of pairs of closely related species against the amount of distributional overlap between the species reveals a bimodal distribution with modes on allopatric and sympatric. The proportion of sister species pairs that are heteromorphic for the traits under disruptive selection is higher in sympatry than in allopatry. These data support the hypothesis that disruptive sexual selection on colour polymorphisms has caused sympatric speciation and help to explain the rapid radiation of haplochromine species flocks.
Resumo:
Several theories assume that successful team coordination is partly based on knowledge that helps anticipating individual contributions necessary in a situational task. It has been argued that a more ecological perspective needs to be considered in contexts evolving dynamically and unpredictably. In football, defensive plays are usually coordinated according to strategic concepts spanning all members and large areas of the playfield. On the other hand, fewer people are involved in offensive plays as these are less projectable and strongly constrained by ecological characteristics. The aim of this study is to test the effects of ecological constraints and player knowledge on decision making in offensive game scenarios. It is hypothesized that both knowledge about team members and situational constraints will influence decisional processes. Effects of situational constraints are expected to be of higher magnitude. Two teams playing in the fourth league of the Swiss Football Federation participate in the study. Forty customized game scenarios were developed based on the coaches’ information about player positions and game strategies. Each player was shown in ball possession four times. Participants were asked to take the perspective of the player on the ball and to choose a passing destination and a recipient. Participants then rated domain specific strengths (e.g., technical skills, game intelligence) of each of their teammates. Multilevel models for categorical dependent variables (team members) will be specified. Player knowledge (rated skills) and ecological constraints (operationalized as each players’ proximity and availability for ball reception) are included as predictor variables. Data are currently being collected. Results will yield effects of parameters that are stable across situations as well as of variable parameters that are bound to situational context. These will enable insight into the degree to which ecological constraints and more enduring team knowledge are involved in decisional processes aimed at coordinating interpersonal action.
Resumo:
Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.
Resumo:
The present paper discusses a conceptual, methodological and practical framework within which the limitations of the conventional notion of natural resource management (NRM) can be overcome. NRM is understood as the application of scientific ecological knowledge to resource management. By including a consideration of the normative imperatives that arise from scientific ecological knowledge and submitting them to public scrutiny, ‘sustainable management of natural resources’ can be recontextualised as ‘sustainable governance of natural resources’. This in turn makes it possible to place the politically neutralising discourse of ‘management’ in a space for wider societal debate, in which the different actors involved can deliberate and negotiate the norms, rules and power relations related to natural resource use and sustainable development. The transformation of sustainable management into sustainable governance of natural resources can be conceptualised as a social learning process involving scientists, experts, politicians and local actors, and their corresponding scientific and non-scientific knowledges. The social learning process is the result of what Habermas has described as ‘communicative action’, in contrast to ‘strategic action’. Sustainable governance of natural resources thus requires a new space for communicative action aiming at shared, intersubjectively validated definitions of actual situations and the goals and means required for transforming current norms, rules and power relations in order to achieve sustainable development. Case studies from rural India, Bolivia and Mali explore the potentials and limitations for broadening communicative action through an intensification of social learning processes at the interface of local and external knowledge. Key factors that enable or hinder the transformation of sustainable management into sustainable governance of natural resources through social learning processes and communicative action are discussed.
Resumo:
The sudden independence of Kyrgyzstan from the Soviet Union in 1991 led to a total rupture of industrial and agricultural production. Based on empirical data, this study seeks to identify key land use transformation processes since the late 1980s, their impact on people's livelihoods and the implication for natural resources in the communes of Tosh Bulak and Saz, located in the Sokuluk River Basin on the northern slope of the Kyrgyz Range. Using the concept of the sustainable livelihood approach as an analytical framework, three different livelihood strategies were identified: (1) An accumulation strategy applied by wealthy households where renting and/or buying of land is a key element; they are the only household category capable of venturing into rain fed agriculture. (2) A preserving strategy involving mainly intermediate households who are not able to buy or rent additional agricultural land; very often they are forced to return their land to the commune or sell it to wealthier households. (3) A coping strategy including mainly poor households consisting of elderly pensioners or headed by single mothers; due to their limited labour and economic power, agricultural production is very low and hardly covers subsistence needs; pensions and social allowances form the backbone of these livelihoods. Ecological assessments have shown that the forage productivity of remote high mountain pastures has increased from 5 to 22 per cent since 1978. At the same time forage productivity on pre-mountain and mountain pastures close to villages has generally decreased from 1 to 34 per cent. It seems that the main avenues for livelihoods to increase their wealth are to be found in the agricultural sector by controlling more and mainly irrigated land as well as by increasing livestock. The losers in this process are thus those households unable to keep or exploit their arable land or to benefit from new agricultural land. Ensuring access to land for the poor is therefore imperative in order to combat rural poverty and socio-economic disparities in rural Kyrgyzstan.