97 resultados para ELECTRODE PLACEMENT
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Deep brain stimulation (DBS) is recognized as an effective treatment for movement disorders. We recently changed our technique, limiting the number of brain penetrations to three per side. OBJECTIVES The first aim was to evaluate the electrode precision on both sides of surgery since we implemented this surgical technique. The second aim was to analyse whether or not the electrode placement was improved with microrecording and macrostimulation. METHODS We retrospectively reviewed operation protocols and MRIs of 30 patients who underwent bilateral DBS. For microrecording and macrostimulation, we used three parallel channels of the 'Ben Gun' centred on the MRI-planned target. Pre- and post-operative MRIs were merged. The distance between the planned target and the centre of the implanted electrode artefact was measured. RESULTS There was no significant difference in targeting precision on both sides of surgery. There was more intra-operative adjustment of the second electrode positioning based on microrecording and macrostimulation, which allowed to significantly approach the MRI-planned target on the medial-lateral axis. CONCLUSION There was more electrode adjustment needed on the second side, possibly in relation with brain shift. We thus suggest performing a single central track with electrophysiological and clinical assessment, with multidirectional exploration on demand for suboptimal clinical responses.
Resumo:
Baroreceptor stimulators are novel implantable devices that activate the carotid baroreceptor reflex. This results in a decrease in activity of the sympathetic nervous system and inhibition of the renin-angiotensin-aldosterone system. In patients with drug-resistant hypertension, permanent electrical activation of the baroreceptor reflex results in blood pressure reduction and cardiac remodeling. For correct intraoperative electrode placement at the carotid bifurcation, the baroreceptor reflex needs to be activated several times. Many common anesthetic agents, such as inhalation anesthetics and propofol dampen or inhibit the baroreceptor reflex and complicate or even prevent successful placement. Therefore, a specific anesthesia and pharmacological management is necessary to ensure successful implantation of baroreceptor reflex stimulators.
Resumo:
HYPOTHESIS To evaluate the feasibility and the results of insertion of two types of electrode arrays in a robotically assisted surgical approach. BACKGROUND Recent publications demonstrated that robot-assisted surgery allows the implantation of free-fitting electrode arrays through a cochleostomy drilled via a narrow bony tunnel (DCA). We investigated if electrode arrays from different manufacturers could be used with this approach. METHODS Cone-beam CT imaging was performed on fivecadaveric heads after placement of fiducial screws. Relevant anatomical structures were segmented and the DCA trajectory, including the position of the cochleostomy, was defined to target the center of the scala tympani while reducing the risk of lesions to the facial nerve. Med-El Flex 28 and Cochlear CI422 electrodes were implanted on both sides, and their position was verified by cone-beam CT. Finally, temporal bones were dissected to assess the occurrence of damage to anatomical structures during DCA drilling. RESULTS The cochleostomy site was directed in the scala tympani in 9 of 10 cases. The insertion of electrode arrays was successful in 19 of 20 attempts. No facial nerve damage was observed. The average difference between the planned and the postoperative trajectory was 0.17 ± 0.19 mm at the level of the facial nerve. The average depth of insertion was 305.5 ± 55.2 and 243 ± 32.1 degrees with Med-El and Cochlear arrays, respectively. CONCLUSIONS Robot-assisted surgery is a reliable tool to allow cochlear implantation through a cochleostomy. Technical solutions must be developed to improve the electrode array insertion using this approach.
Resumo:
OBJECTIVES: To determine (1) the optimal sites for mini-implant placement in the maxilla and the mandible based on dimensional mapping of the interradicular spaces and cortical bone thickness and (2) The effect of age and sex on the studied anatomic measurements. MATERIAL AND METHODS: The cone beam computed tomography images of 100 patients (46 males, 54 females) divided into two age groups (13-18 years), and (19-27 years) were used. The following interradicular measurements were performed: (1) Buccolingual bone thickness; (2) Mesiodistal spaces both buccally and palatally/lingually; and (3) Buccal and palatal/lingual cortical thicknesses. RESULTS: In the maxilla, the highest buccolingual thickness existed between first and second molars; the highest mesiodistal buccal/palatal distances were between the second premolar and the first molar. The highest buccal cortical thickness was between the first and second premolars. The highest palatal cortical thickness was between central and lateral incisors. In the mandible, the highest buccolingual and buccal cortical thicknesses were between the first and second molars. The highest mesiodistal buccal distance was between the second premolar and the first molar. The highest mesiodistal lingual distance was between the first and second premolars. The highest lingual cortical thickness was between the canine and the first premolar. The males and the older age group had significantly higher buccolingual, buccal, and palatal cortical thicknesses at specific sites and levels in the maxilla and the mandible. CONCLUSIONS: A clinical guideline for optimal sites for mini-implant placement is suggested. Sex and age affected the anatomic measurements in certain areas in the maxilla and the mandible.
Resumo:
Early implant placement is one of the treatment options after tooth extraction. Implant surgery is performed after a healing period of 4 to 8 weeks and combined with a simultaneous contour augmentation using the guided bone regeneration technique to rebuild stable esthetic facial hard- and soft-tissue contours.
Resumo:
Paravertebral regional anaesthesia is used to treat pain after several surgical procedures. This study aimed to improve on our first published ultrasound-guided approach to the paravertebral space (PVS) and to investigate a possible discrepancy between the needle, catheter, and contrast dye position.
Resumo:
The accurate position of the ventricular catheter inside the frontal horn of the lateral ventricle is essential to prevent proximal failure in shunt surgery. For optimal placement, endoscopic- and image-guided techniques are available.
Resumo:
PURPOSE: This pilot study evaluated the wound healing and tissue response after placement of two different skin substitutes in subgingival mucosal pouches in rabbits. MATERIALS AND METHODS: Four rabbits were selected to receive a commercially available skin substitute consisting of a collagen matrix with fibroblasts and an epithelial layer (test membrane 1) and a prototype device consisting of a collagen matrix with fibroblasts only (test membrane 2). In each rabbit, two horizontal incisions were made in the buccal alveolar mucosa of the maxilla bilaterally to create submucosal pouches. Three pouches in each animal were filled with either the test 1 or test 2 membranes, and one pouch was left without a membrane (sham-operated control). All rabbits were sacrificed after a healing period of 4 weeks, and histologic samples were prepared and examined. RESULTS: After a healing period of 1 month, both tested membranes were still visible in the sections. Test membrane 1 was still bilayered, contained inflammatory cells in its center, and was encapsulated by a thick fibrous tissue. Numerous ectopic calcifications were evident in the collagenous part of the membrane and in association with some basal epithelial cells. Test membrane 2 was also encapsulated in fibrous tissue, with inflammatory cells present only between the fibrous encapsulation and the remnants of the membrane. For test membrane 2, no calcifications were visible. CONCLUSIONS: Test membrane 1 seemed to be more resistant to degradation, but there was also a more pronounced inflammatory reaction in comparison to test membrane 2, especially in the vicinity of the keratinocytes. The significance of the ectopic calcifications, along with that of the resorption or degradation processes of both tested membranes, must be evaluated in future experimental studies, with different time points after implantation examine
Resumo:
In this paper we propose a new system that allows reliable acetabular cup placement when the THA is operated in lateral approach. Conceptually it combines the accuracy of computer-generated patient-specific morphology information with an easy-to-use mechanical guide, which effectively uses natural gravity as the angular reference. The former is achieved by using a statistical shape model-based 2D-3D reconstruction technique that can generate a scaled, patient-specific 3D shape model of the pelvis from a single conventional anteroposterior (AP) pelvic X-ray radiograph. The reconstructed 3D shape model facilitates a reliable and accurate co-registration of the mechanical guide with the patient’s anatomy in the operating theater. We validated the accuracy of our system by conducting experiments on placing seven cups to four pelvises with different morphologies. Taking the measurements from an image-free navigation system as the ground truth, our system showed an average accuracy of 2.1 ±0.7 o for inclination and an average accuracy of 1.2 ±1.4 o for anteversion.
Resumo:
There are conflicting results with regard to the use of catheter-based techniques for continuous paravertebral block. Local anaesthetic spread within the paravertebral space is limited and the clinical effect is often variable. Discrepancies between needle tip position and final catheter position can also be problematic. The aim of this proof-of-concept study was to assess the reliability of placing a newly developed coiled catheter in human cadavers. Sixty Tuohy needles and coiled catheters were placed under ultrasound guidance, three on each side of the thoracic vertebral column in 10 human cadavers. Computed tomography was used to assess needle tip and catheter tip locations. No catheter was misplaced into the epidural, pleural or prevertebral spaces. The mean (SD) distance between catheter tips and needle tips was 8.2 (4.9) mm. The median (IQR [range]) caudo-cephalad spread of contrast dye injectate through a subset of 20 catheters was 4 (4-5[3-8]) thoracic segments. All catheters were removed without incident. Precise paravertebral catheter placement can be achieved using ultrasound-guided placement of a coiled catheter.
Resumo:
To test the hypothesis that cardiometabolic risk is attenuated when caregivers are relieved of caregiving stress when the caregiving recipient transitions out of the home.
Resumo:
Conclusion: A robot built specifically for stereotactic cochlear implantation provides equal or better accuracy levels together with a better integration into a clinical environment, when compared to existing approaches based on industrial robots. Objectives: To evaluate the technical accuracy of a robotic system developed specifically for lateral skull base surgery in an experimental setup reflecting the intended clinical application. The invasiveness of cochlear electrode implantation procedures may be reduced by replacing the traditional mastoidectomy with a small tunnel slightly larger in diameter than the electrode itself. Methods: The end-to-end accuracy of the robot system and associated image-guided procedure was evaluated on 15 temporal bones of whole head cadaver specimens. The main components of the procedure were as follows: reference screw placement, cone beam CT scan, computer-aided planning, pair-point matching of the surgical plan, robotic drilling of the direct access tunnel, and post-operative cone beam CT scan and accuracy assessment. Results: The mean accuracy at the target point (round window) was 0.56 ± 41 mm with an angular misalignment of 0.88 ± 0.41°. The procedural time of the registration process through the completion of the drilling procedure was 25 ± 11 min. The robot was fully operational in a clinical environment.