19 resultados para Dry Powder Inhaler, Formulation, Device, Aerosols, Pulmonary
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Fractional exhaled nitric oxide (FENO), a non-invasive marker of eosinophilic airway inflammation, is increasingly used for diagnostic and therapeutic decisions in adult and paediatric asthma. Standardized guidelines for the measurement of FENO recommend performing FENO measurements before rather than after bronchial provocation tests. OBJECTIVE To investigate whether FENO levels decrease after a Mannitol dry powder (MDP) challenge in a clinical setting, and whether the extent of the decrease is influenced by number of MDP manoeuvres, baseline FENO, atopy and doctor diagnosed asthma. METHODS Children aged 6-16 years, referred for possible reactive airway disease to a respiratory outpatient clinic, performed an MDP challenge (Aridol®, Pharmaxis, Australia). FENO was measured in doublets immediately before and after the challenge test using the portable NIOX MINO® device (Aerocrine, Stockholm, Sweden). We analysed the data using Kruskal-Wallis rank tests, Wilcoxon signed rank tests and multivariable linear regressions. RESULTS One hundred and seven children completed both tests (mean±SD age 11.5±2.8 years). Overall, median (interquartile range) FENO decreased slightly by -2.5 ppb (-7.0, -0.5), from 18.5 ppb (10.5, 45.5) before the MDP challenge to 16.5 ppb thereafter (8.5, 40.5; p<0.001). In all participants, the change in FENO was smaller than one standard deviation of the baseline mean. The % fall in FENO was smaller in children with less MDP manoeuvres (e.g. higher bronchial responsiveness; p = 0.08) but was not influenced by levels of baseline FENO (p = 0.68), atopy (p = 0.84) or doctor diagnosed asthma (p = 0.93). CONCLUSION MDP challenge test influences FENO values but differences are small and clinically barely relevant.
Resumo:
Rationale Mannitol dry powder (MDP) challenge is an indirect bronchial provocation test, which is well studied in adults but not established for children. Objective We compared feasibility, validity, and clinical significance of MDP challenge with exercise testing in children in a clinical setting. Methods Children aged 6–16 years, referred to two respiratory outpatient clinics for possible asthma diagnosis, underwent standardized exercise testing followed within a week by an MDP challenge (Aridol™, Pharmaxis, Australia). Agreement between the two challenge tests using Cohen's kappa and receiving operating characteristic (ROC) curves was compared. Results One hundred eleven children performed both challenge tests. Twelve children were excluded due to exhaustion or insufficient cooperation (11 at the exercise test, 1 at the MDP challenge), leaving 99 children (mean ± SD age 11.5 ± 2.7 years) for analysis. MDP tests were well accepted, with minor side effects and a shorter duration than exercise tests. The MDP challenge was positive in 29 children (29%), the exercise test in 21 (21%). Both tests were concordant in 83 children (84%), with moderate agreement (κ = 0.58, 95% CI 0.39–0.76). Positive and negative predictive values of the MDP challenge for exercise-induced bronchoconstriction were 68% and 89%. The overall ability of MDP challenge to separate children with or without positive exercise tests was good (area under the ROC curve 0.83). Conclusions MDP challenge test is feasible in children and is a suitable alternative for bronchial challenge testing in childhood. Pediatr. Pulmonol. 2011; 46:842–848. © 2011 Wiley-Liss, Inc.
Resumo:
A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells. Size selective deposition with subsequent absorption was studied for three different commercially available dry powder formulations of salbutamol sulphate and budesonide. After deposition without size separation the absorption rates from the aerosol formulations differed but correlated with the size of the carrier lactose particles. However, after deposition in the MSLI, simulating relevant impaction and causing the separation of small drug crystals from the carrier lactose, the absorption rates of the three formulations were identical, confirming the bioequivalence of the three formulations.
Resumo:
Deposition and clearance studies are used during product development and in fundamental research. These studies mostly involve radionuclide imaging, but pharmacokinetic methods are also used to assess the amount of drug absorbed through the lungs, which is closely related to lung deposition. Radionuclide imaging may be two-dimensional (gamma scintigraphy or planar imaging), or three-dimensional (single photon emission computed tomography and positron emission tomography). In October 2009, a group of scientists met at the "Thousand Years of Pharmaceutical Aerosols" conference in Reykjavik, Iceland, to discuss future research in key areas of pulmonary drug delivery. This article reports the session on "Deposition, imaging and clearance." The objective was partly to review our current understanding, but more importantly to assess "what remains to be done?" A need to standardize methodology and provide a regulatory framework by which data from radionuclide imaging methods could be compared between centers and used in the drug approval process was recognized. There is also a requirement for novel radiolabeling methods that are more representative of production processes for dry powder inhalers and pressurized metered dose inhalers. A need was identified for studies to aid our understanding of the relationship between clinical effects and regional deposition patterns of inhaled drugs. A robust methodology to assess clearance from small conducting airways should be developed, as a potential biomarker for therapies in cystic fibrosis and other diseases. The mechanisms by which inhaled nanoparticles are removed from the lungs, and the factors on which their removal depends, require further investigation. Last, and by no means least, we need a better understanding of patient-related factors, including how to reduce the variability in pulmonary drug delivery, in order to improve the precision of deposition and clearance measurements.
Resumo:
Subcutaneous emphysema are rare complications in periodontology. In most cases, they resolve spontaneously. However, air might disperse into deeper facial spaces causing life-threatening complications such as compression of the tracheobronchial tree or the development of pneumomediastinum. Moreover, microorganisms might spread from the oral cavity into deeper spaces. Hence, rapid diagnosis of subcutaneous emphysema is important. Characteristic signs are both a shiftable swelling and a crepitation. In this case report, the case of a 69-year old man with a subcutaneous emphysema immediately after peri-implantitis therapy with the use of a glycine-based powder air-polishing device is described. Following therapy, air accumulated in the left side of the face. Seven days after non-surgical peri-implantitis therapy, the patient was asymptomatic with complete resolution of the emphysema.
Resumo:
Abstract Background: Aerosol therapy in preterm infants is challenging, as a very small proportion of the drug deposits in the lungs. Aim: Our aim was to compare efficiency of standard devices with newer, more efficient aerosol delivery devices. Methods: Using salbutamol as a drug marker, we studied two prototypes of the investigational eFlow(®) nebulizer for babies (PARI Pharma GmbH), a jet nebulizer (Intersurgical(®) Cirrus(®)), and a pressurized metered dose inhaler (pMDI; GSK) with a detergent-coated holding chamber (AeroChamber(®) MV) in the premature infant nose throat-model (PrINT-model) of a 32-week preterm infant (1,750 g). A filter or an impactor was placed below the infant model's "trachea" to capture the drug dose or particle size, respectively, that would have been deposited in the lung. Results: Lung dose (percentage of nominal dose) was 1.5%, 6.8%, and 18.0-20.6% for the jet nebulizer, pMDI-holding chamber, and investigational eFlow nebulizers, respectively (p<0.001). Jet nebulizer residue was 69.4% and 10.7-13.9% for the investigational eFlow nebulizers (p<0.001). Adding an elbow extension between the eFlow and the model significantly lowered lung dose (p<0.001). A breathing pattern with lower tidal volume decreased deposition in the PrINT-model and device residue (p<0.05), but did not decrease lung dose. Conclusions: In a model for infant aerosol inhalation, we confirmed low lung dose using jet nebulizers and pMDI-holding chambers, whereas newer, more specialized vibrating membrane devices, designed specifically for use in preterm infants, deliver up to 20 times more drug to the infant's lung.
Resumo:
We report a case involving a spring-gun device (muzzleloader) loaded solely with gunpowder, installed next to shoes to prevent the neighbors' puppy from removing them. The booby trap was triggered by the 15-year-old dog-owners son when he tried to put the shoes out of the reach of the puppy. The boy suffered second degree superficial burns located mainly at the dorsal side of the right hand and fingers. To estimate the danger of the used weapon, several tests were undertaken on soap blocks from different distances and with different loads of black powder. The particle density per mm and the depth of black powder tattooing in the soap was compared with the boy's injuries, and found conclusive with the gun-owners statement regarding the loading of the weapon. Furthermore, our experiments indicated that the gunpowder load involved was not able to inflict permanent damage, not even to the eyes, at the here estimated firing distance.
Resumo:
OBJECTIVE: Current pulsatile ventricular assist devices operate asynchronous with the left ventricle in fixed-rate or fill-to-empty modes because electrocardiogram-triggered modes have been abandoned. We hypothesize that varying the ejection delay in the synchronized mode yields more precise control of hemodynamics and left ventricular loading. This allows for a refined management that may be clinically beneficial. METHODS: Eight sheep received a Thoratec paracorporeal ventricular assist device (Thoratec Corp, Pleasanton, Calif) via ventriculo-aortic cannulation. Left ventricular pressure and volume, aortic pressure, pulmonary flow, pump chamber pressure, and pump inflow and outflow were recorded. The pump was driven by a clinical pneumatic drive unit (Medos Medizintechnik AG, Stolberg, Germany) synchronously with the native R-wave. The start of pump ejection was delayed between 0% and 100% of the cardiac period in 10% increments. For each of these delays, hemodynamic variables were compared with baseline data using paired t tests. RESULTS: The location of the minimum of stroke work was observed at a delay of 10% (soon after aortic valve opening), resulting in a median of 43% reduction in stroke work compared with baseline. Maximum stroke work occurred at a median delay of 70% with a median stroke work increase of 11% above baseline. Left ventricular volume unloading expressed by end-diastolic volume was most pronounced for copulsation (delay 0%). CONCLUSIONS: The timing of pump ejection in synchronized mode yields control over left ventricular energetics and can be a method to achieve gradual reloading of a recoverable left ventricle. The traditionally suggested counterpulsation is not optimal in ventriculo-aortic cannulation when maximum unloading is desired.
Resumo:
HISTORY: A 76-year-old woman and a 62-year-old man were both referred to our clinic because of an unexplained weight loss, increasing dry cough and shortness of breath. INVESTIGATIONS: Investigations revealed an adenocarcinoma of the colon with retroperitoneal, mediastinal and supraclavicular lymph node metastasis and poorly differentiated carcinoma of the prostate with extensive bone metastases. During their hospital stay both patients developed increasing shortness of breath and clinical signs of right heart failure. Echocardiography confirmed severe pulmonary hypertension and dilatation of the right ventricle in both patients. Despite the high degree of clinical suspicion CT scans of the thorax could not demonstrate pulmonary embolism. DIAGNOSIS, TREATMENT AND COURSE: During the following days the patients condition deteriorated further and both patients' died from irreversible right heart failure. Both autopsies showed extensive metastatic adenocarcinoma with marked angiosis carcinomatosa of the lungs with numerous occlusions of small arteries and arterioles and resulting cor pulmonale. Thrombotic pulmonary embolism could not be detected. CONCLUSION: In patients with malignant neoplasms, especially adenocarcinomas, dyspnea and signs of increasing pulmonary artery pressure, the possibility of a microscopic pulmonary tumor embolism should be considered after exclusion of more usual causes especially thrombotic pulmonary embolism. In selected cases a cytologic examination of blood aspirated from a wedged pulmonary artery catheter can be performed to prove angiosis is carcinomatosa.
Resumo:
An 80-year-old nonsmoking man was referred to our hospital with bilateral perihilar pulmonary opacities. He had a history of epilepsy, sclerosing cholangitis, cutaneous lesions previously diagnosed as localised Langerhans cell histiocytosis. Symptoms included dry cough and dyspnea. Chest CT showed bilateral perihilar alveolar consolidation with bronchiectasis. Histological examination of a lung biopsy showed typical features of Langerhans cell granulomatosis. Investigations revealed anterior and posterior hypopituitarism. An important improvement occurred with corticosteroid and vinblastine treatment.
Resumo:
OBJECTIVES: Pulmonary valve insufficiency remains a leading cause for reoperations in congenital cardiac surgery. The current percutaneous approach is limited by the size of the access vessel and variable right ventricular outflow tract morphology. This study assesses the feasibility of transapical pulmonary valve replacement based on a new valved stent construction concept. METHODS: A new valved stent design was implanted off-pump under continuous intracardiac echocardiographic and fluoroscopic guidance into the native right ventricular outflow tract in 8 pigs (48.5 +/- 6.0 kg) through the right ventricular apex, and device function was studied by using invasive and noninvasive measures. RESULTS: Procedural success was 100% at the first attempt. Procedural time was 75 +/- 15 minutes. All devices were delivered at the target site with good acute valve function. No valved stents dislodged. No animal had significant regurgitation or paravalvular leaking on intracardiac echocardiographic analysis. All animals had a competent tricuspid valve and no signs of right ventricular dysfunction. The planimetric valve orifice was 2.85 +/- 0.32 cm(2). No damage to the pulmonary artery or structural defect of the valved stents was found at necropsy. CONCLUSIONS: This study confirms the feasibility of direct access valve replacement through the transapical procedure for replacement of the pulmonary valve, as well as validity of the new valved stent design concept. The transapical procedure is targeting a broader patient pool, including the very young and the adult patient. The device design might not be restricted to failing conduits only and could allow for implantation in a larger patient population, including those with native right ventricular outflow tract configurations.
Resumo:
OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN: Prospective, randomized, laboratory animal study. SUBJECTS: Twenty-seven male New Zealand white rabbits. INTERVENTIONS: Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS: In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.
Resumo:
OBJECTIVES The aim of this prospective, randomized, controlled clinical study was to compare the clinical outcomes of the subgingival treatment with erythritol powder by means of an air-polishing (EPAP) device and of scaling and root planing (SRP) during supportive periodontal therapy (SPT). METHOD AND MATERIALS 40 patients enrolled in SPT were randomly assigned to two groups of equal size. Sites had to show signs of inflammation (bleeding on probing [BOP]-positive) and a probing pocket depth (PPD) of ≥ 4 mm, however, without presence of detectable subgingival calculus. During SPT, these sites were treated with EPAP or SRP, respectively. Full mouth and site-specific plaque indices, BOP, PPD, and clinical attachment level (CAL) were recorded at baseline (BL) and at 3 months, whereas the percentage of study sites positive for BOP (BOP+) was considered as primary outcome variable. Additionally, patient comfort using a visual analog scale (VAS) and the time needed to treat per site was evaluated. RESULTS At 3 months, mean BOP level measured 45.1% at test sites and 50.6% at control sites, respectively, without a statistically significant difference between the groups (P > .05). PPD and CAL slightly improved for both groups with comparable mean values at 3 months. Evaluation of patient tolerance showed statistically significantly better values among patients receiving the test treatment (mean VAS [0-10], 1.51) compared to SRP (mean VAS [0-10], 3.66; P = .0012). The treatment of test sites was set to 5 seconds per site. The treatment of control sites, on the other hand, lasted 85 seconds on average. CONCLUSION The new erythritol powder applied with an air-polishing device can be considered a promising modality for repeated instrumentation of residual pockets during SPT. CLINICAL RELEVANCE With regard to clinical outcomes during SPT, similar results can be expected irrespective of the two treatment approaches of hand instrumentation or subgingival application of erythritol powder with an air-polishing device in sites where only biofilm removal is required.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems have led to additional strategies in the treatment of end-stage heart failure. Heart transplantation can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVADs). Mechanical support of the failing left ventricle enables appropriate haemodynamic stabilization and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. An LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group O or B, with high or low body weight and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent perioperative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of an LVAD represents a surgical challenge. The care of patients after the implantation of miniaturized LVADs, such as the HeartWare® system, seems to be easier than following pulsatile devices. The explantation of such devices at the time of transplantation is technically more comfortable than after HeartMate II implantation.