55 resultados para Descriptive texts
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To describe an ultrasonic surgical aspirator assisted disk fenestration technique in dogs. STUDY DESIGN: Descriptive cadaveric and prospective clinical study. ANIMALS: Fresh Beagle cadavers (n=5) and 10 chondrodystrophic dogs with thoracolumbar disk extrusion. METHODS: Cadaveric study: Intervertebral disks T12-L2 were fenestrated with the CUSA Excel in 5 Beagle cadavers, and fenestration efficacy assessed by morphologic examination of the completeness of fenestration and size of annulotomy. Clinical study: the affected intervertebral disk was fenestrated in 10 chondrodystrophic dogs treated by hemilaminectomy for thoracolumbar disk disease. Efficacy of fenestration was evaluated. RESULTS: Mean time necessary to perform CUSA assisted fenestration was 8 minutes (range, 5-10 minutes) for each disk in cadavers and patients. In cadaver spines, removal of the nucleus pulposus was complete in 11/15 disks. In 4 disks, remnants of nucleus pulposus material were observed on the contralateral side. Nuclear material was normal in 9/15 disks and showed evidence of chondroid degeneration on histopathologic examination in the 6 disks. Median annulotomy size was 3 mm. Clinically, no signs of early recurrence were observed and all dogs recovered uneventfully. CONCLUSIONS: CUSA assisted fenestration is a safe and efficient method of fenestration for removal of most of the nucleus pulposus through a limited annulotomy.
Resumo:
In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor.