22 resultados para Decoupling
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
On Au(111) electrodes, the investigation of ClO4− adsorption is hampered by a simultaneous surface reconstruction. We demonstrate that these two processes can be decoupled in cyclic voltammograms by a proper choice of the scan rate and of the initial potential. Our approach allowed the establishment of a relation between potentials of zero charge for the reconstructed and unreconstructed Au(111) surfaces.
Resumo:
In this article we review the phenomenological consequences of radiative flavor-violation (RFV) in the MSSM. In the model under consideration the U(3)^3 flavor symmetry of the gauge sector is broken in a first step to U(2)^3 by the top and bottom Yukawa couplings of the superpotential (and possibly also by the bilinear SUSY-breaking terms). In a second step the remaining U(2)^3 flavor symmetry is softly broken by the trilinear A-terms in order to obtain the measured quark masses and the CKM matrix of the Standard Model (SM) at low energies. The phenomenological implications of this model depend on the actual choice of the SUSY breaking A-terms. If the CKM matrix is generated in the down sector (by A^d), Bs->mu^+mu^- receives non-decoupling contributions from Higgs penguins which become important already for moderate values of tan(beta). Also the Bs mixing amplitude can be significantly modified compared to the SM prediction including a potential induction of a new CP-violating phase (which is not possible in the MSSM with MFV).
Resumo:
Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by (31)P-MRS) and glycogen (by (13)C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, (1)H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of (1)H-, (13)C-, and (31)P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications.
Resumo:
The natural regulation of the water cycle by tropical montane forests is an important ecosystem service. Within this chapter we focus on water balance and regulation of the water cycle. Differences of rainfall-runoff generation across scales change from a near-surface event water driven system in pristine rainforest-covered micro-catchments to a more groundwater pre-event water dominated one on the mesoscale. The highly dynamic discharges are often correlated with total suspended sediment loads. However, we also observed total suspended sediment peaks at times of low flow, indicating a decoupling of erosion and stream transport and a triggering of landslides not directly related to hydrological processes. We also summarize likely future trends of water-related ecosystem services and expect an increase in human use and benefits of fresh water use whereas changes in water regulation and water purification services remain unchanged on a high level.
Resumo:
In this article, we perform an extensive study of flavor observables in a two-Higgs-doublet model with generic Yukawa structure (of type III). This model is interesting not only because it is the decoupling limit of the minimal supersymmetric standard model but also because of its rich flavor phenomenology which also allows for sizable effects not only in flavor-changing neutral-current (FCNC) processes but also in tauonic B decays. We examine the possible effects in flavor physics and constrain the model both from tree-level processes and from loop observables. The free parameters of the model are the heavy Higgs mass, tanβ (the ratio of vacuum expectation values) and the “nonholomorphic” Yukawa couplings ϵfij(f=u,d,ℓ). In our analysis we constrain the elements ϵfij in various ways: In a first step we give order of magnitude constraints on ϵfij from ’t Hooft’s naturalness criterion, finding that all ϵfij must be rather small unless the third generation is involved. In a second step, we constrain the Yukawa structure of the type-III two-Higgs-doublet model from tree-level FCNC processes (Bs,d→μ+μ−, KL→μ+μ−, D¯¯¯0→μ+μ−, ΔF=2 processes, τ−→μ−μ+μ−, τ−→e−μ+μ− and μ−→e−e+e−) and observe that all flavor off-diagonal elements of these couplings, except ϵu32,31 and ϵu23,13, must be very small in order to satisfy the current experimental bounds. In a third step, we consider Higgs mediated loop contributions to FCNC processes [b→s(d)γ, Bs,d mixing, K−K¯¯¯ mixing and μ→eγ] finding that also ϵu13 and ϵu23 must be very small, while the bounds on ϵu31 and ϵu32 are especially weak. Furthermore, considering the constraints from electric dipole moments we obtain constrains on some parameters ϵu,ℓij. Taking into account the constraints from FCNC processes we study the size of possible effects in the tauonic B decays (B→τν, B→Dτν and B→D∗τν) as well as in D(s)→τν, D(s)→μν, K(π)→eν, K(π)→μν and τ→K(π)ν which are all sensitive to tree-level charged Higgs exchange. Interestingly, the unconstrained ϵu32,31 are just the elements which directly enter the branching ratios for B→τν, B→Dτν and B→D∗τν. We show that they can explain the deviations from the SM predictions in these processes without fine-tuning. Furthermore, B→τν, B→Dτν and B→D∗τν can even be explained simultaneously. Finally, we give upper limits on the branching ratios of the lepton flavor-violating neutral B meson decays (Bs,d→μe, Bs,d→τe and Bs,d→τμ) and correlate the radiative lepton decays (τ→μγ, τ→eγ and μ→eγ) to the corresponding neutral current lepton decays (τ−→μ−μ+μ−, τ−→e−μ+μ− and μ−→e−e+e−). A detailed Appendix contains all relevant information for the considered processes for general scalar-fermion-fermion couplings.
Resumo:
The very young Wabar craters formed by impact of an iron meteorite and are known to the scientific community since 1933. We describe field observations made during a visit to the Wabar impact site, provide analytical data on the material collected, and combine these data with poorly known information discovered during the recovery of the largest meteorites. During our visit in March 2008, only two craters (Philby-B and 11 m) were visible; Philby-A was completely covered by sand. Mapping of the ejecta field showed that the outcrops are strongly changing over time. Combining information from different visitors with our own and satellite images, we estimate that the large seif dunes over the impact site migrate by approximately 1.0–2.0 m yr␣1 southward. Shock lithification took place even at the smallest, 11 m crater, but planar fractures (PFs) and undecorated planar deformation features (PDFs), as well as coesite and stishovite, have only been found in shock-lithified material from the two larger craters. Shock-lithified dune sand material shows perfectly preserved sedimentary structures including cross-bedding and animal burrows as well as postimpact structures such as open fractures perpendicular to the bedding, slickensides, and radiating striation resembling shatter cones. The composition of all impact melt glasses can be explained as mixtures of aeolian sand and iron meteorite. We observed a partial decoupling of Fe and Ni in the black impact glass, probably due to partitioning of Ni into unoxidized metal droplets. The absence of a Ca-enriched component demonstrates that the craters did not penetrate the bedrock below the sand sheet, which has an estimated thickness of 20–30 m.
Resumo:
Recent geomorphological observations as well as chemical and thermodynamic studies demonstrate that liquid water should be stable today on the Martian surface at some times of the day. In Martian conditions, brines would be particularly more stable than pure water because salts can depress the freezing point and lower the evaporation rate of water. Despite this evidence, no clear spectral signature of liquid has been observed so far by the hyperspectral imaging spectrometers OMEGA and CRISM. However, past spectral analysis lacks a good characterization of brines׳ spectral signatures. This study thus aims to determine how liquid brines can be detected on Mars by spectroscopy. In this way, laboratory experiments were performed for reproducing hydration and dehydration cycles of various brines while measuring their spectral signatures. The resulting spectra first reveal a very similar spectral evolution for the various brine types and pure water, with the main difference observed at the end of the dehydration with the crystallization of various hydrated minerals from brines. The main characteristic of this spectral behavior is an important decoupling between the evolution of albedo and hydration bands depths. During most of the wetting/drying processes, spectra usually display a low albedo associated with shallow water absorption band depths. Strong water absorption band depth and high albedo are respectively only observed when the surface is very wet and when the surface is very dry. These experiments can thus explain why the currently active Martian features attributed to the action of a liquid are only associated with low albedo and very weak spectral signatures. Hydration experiments also reveal that deliquescence occurs easily even at low temperature and moderate soil water vapor pressure and could thus cause seasonal darkening on Mars. These experiments demonstrate that the absence of water absorptions in CRISM in the middle afternoon does not rule out water activity and suggest future spectral investigations to identify water on the Martian surface.
Resumo:
We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic anomaly on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric potentials at lunar magnetic anomalies. An antimoonward Hall electric field forms in our simulation resulting in a potential difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric potentials at lunar magnetic anomalies can be formed by decoupling of ion and electron motion even without charge separation.
Resumo:
The Mediterranean region has been identified as a global warming hotspot, where future climate impacts are expected to have significant consequences on societal and ecosystem well-being. To put ongoing trends of summer climate into the context of past natural variability, we reconstructed climate from maximum latewood density (MXD) measurements of Pinus heldreichii (1521–2010) and latewood width (LWW) of Pinus nigra (1617–2010) on Mt. Olympus, Greece. Previous research in the northeastern Mediterranean has primarily focused on inter-annual variability, omitting any low-frequency trends. The present study utilizes methods capable of retaining climatically driven long-term behavior of tree growth. The LWW chronology corresponds closely to early summer moisture variability (May–July, r = 0.65, p < 0.001, 1950–2010), whereas the MXD-chronology relates mainly to late summer warmth (July–September, r = 0.64, p < 0.001; 1899–2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = −0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth—early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700–1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availabilityobserved in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.
Resumo:
Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.
Resumo:
Even though the Standard Model with a Higgs mass mH = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.