30 resultados para Dark matter

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at root s = 7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb(-1) are used. Good agreement is observed between the data and the standard model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmB(241)e neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy-dependent charge-yield Q(y) and relative scintillation efficiency L-eff. A very good level of absolute spectral matching is achieved in both observable signal channels-scintillation S1 and ionization S2-along with agreement in the two-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb(-1) of integrated luminosity at root s = 8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ≳1  TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter–nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

search is presented for production of dark-matter particles recoiling against a leptonically decaying Z boson in 20.3 fb−1 of pp collisions at √s=8 TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark-matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-phase time projection chambers (TPCs) filled with the liquid noble gas xenon (LXe) are currently the most sensitive detectors searching for interactions of WIMP dark matter in a laboratory-based experiment. This is achieved by combining a large, monolithic dark matter target of a very low background with the capability to localize the interaction vertex in three dimensions, allowing for target fiducialization and multiple-scatter rejection. The background in dual-phase LXe TPCs is further reduced by the simultaneous measurement of the scintillation and ionization signal from a particle interaction, which is used to distinguish signal from background signatures. This article reviews the principle of dual-phase LXe TPCs, and provides an overview about running as well as future experimental efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reviews the status of the exciting and fastly evolving field of dark matter research as of summer 2013, when it was discussed at ICRC 2013 in Rio de Janeiro. It focuses on the three main avenues to detect WIMP dark matter: direct detection, indirect detection and collider searches. The article is based on the dark matter rapporteur talk summarizing the presentations given at the conference, filling some gaps for completeness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The putative recent indication of an unidentified 3.55 keV X-ray line in certain astrophysical sources is taken as a motivation for an improved theoretical computation of the cosmological abundance of 7.1 keV sterile neutrinos. If the line is interpreted as resulting from the decay of Warm Dark Matter, the mass and mixing angle of the sterile neutrino are known. Our computation then permits for a determination of the lepton asymmetry that is needed for producing the correct abundance via the Shi-Fuller mechanism, as well as for an estimate of the non-equilibrium spectrum of the sterile neutrinos. The latter plays a role in structure formation simulations. Results are presented for different flavour structures of the neutrino Yukawa couplings and for different types of pre-existing lepton asymmetries, accounting properly for the charge neutrality of the plasma and incorporating approximately hadronic contributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs) using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar) or spin-dependent (axial-vector) couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5×10−49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Hamamatsu R11410 photomultiplier, a tube of 3" diameter and with a very low intrinsic radioactivity, is an interesting light sensor candidate for future experiments using liquid xenon (LXe) as target for direct dark matter searches. We have performed several experiments with the R11410 with the goal of testing its performance in environments similar to a dark matter detector setup. In particular, we examined its long-term behavior and stability in LXe and its response in various electric field configurations.