14 resultados para Crank-Nicolson scheme
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This multi-phase study examined the influence of retrieval processes on children’s metacognitive processes in relation to and in interaction with achievement level and age. First, N = 150 9/10- and 11/12-year old high and low achievers watched an educational film and predicted their test performance. Children then solved a cloze test regarding the film content including answerable and unanswerable items and gave confidence judgments to every answer. Finally, children withdrew answers that they believed to be incorrect. All children showed adequate metacognitive processes before and during test taking with 11/12- year-olds outperforming 9/10-year-olds when considering characteristics of on-going retrieval processes. As to the influence of achievement level, high compared to low achievers proved to be more accurate in their metacognitive monitoring and controlling. Results suggest that both cognitive resources (operationalized through achievement level) and mnemonic experience (assessed through age) fuel metacognitive development. Nevertheless, when facing higher demands regarding retrieval processes, experience seems to play the more important role.
Resumo:
Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.
Resumo:
Microsoft Project is one of the most-widely used software packages for project management. For the scheduling of resource-constrained projects, the package applies a priority-based procedure using a specific schedule-generation scheme. This procedure performs relatively poorly when compared against other software packages or state-of-the-art methods for resource-constrained project scheduling. In Microsoft Project 2010, it is possible to work with schedules that are infeasible with respect to the precedence or the resource constraints. We propose a novel schedule-generation scheme that makes use of this possibility. Under this scheme, the project tasks are scheduled sequentially while taking into account all temporal and resource constraints that a user can define within Microsoft Project. The scheme can be implemented as a priority-rule based heuristic procedure. Our computational results for two real-world construction projects indicate that this procedure outperforms the built-in procedure of Microsoft Project