26 resultados para Computer arithmetic and logic units.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we continue Feferman’s unfolding program initiated in (Feferman, vol. 6 of Lecture Notes in Logic, 1996) which uses the concept of the unfolding U(S) of a schematic system S in order to describe those operations, predicates and principles concerning them, which are implicit in the acceptance of S. The program has been carried through for a schematic system of non-finitist arithmetic NFA in Feferman and Strahm (Ann Pure Appl Log, 104(1–3):75–96, 2000) and for a system FA (with and without Bar rule) in Feferman and Strahm (Rev Symb Log, 3(4):665–689, 2010). The present contribution elucidates the concept of unfolding for a basic schematic system FEA of feasible arithmetic. Apart from the operational unfolding U0(FEA) of FEA, we study two full unfolding notions, namely the predicate unfolding U(FEA) and a more general truth unfolding UT(FEA) of FEA, the latter making use of a truth predicate added to the language of the operational unfolding. The main results obtained are that the provably convergent functions on binary words for all three unfolding systems are precisely those being computable in polynomial time. The upper bound computations make essential use of a specific theory of truth TPT over combinatory logic, which has recently been introduced in Eberhard and Strahm (Bull Symb Log, 18(3):474–475, 2012) and Eberhard (A feasible theory of truth over combinatory logic, 2014) and whose involved proof-theoretic analysis is due to Eberhard (A feasible theory of truth over combinatory logic, 2014). The results of this paper were first announced in (Eberhard and Strahm, Bull Symb Log 18(3):474–475, 2012).
Resumo:
An accurate assessment of the computer skills of students is a pre-requisite for the success of any e-learning interventions. The aim of the present study was to assess objectively the computer literacy and attitudes in a group of Greek post-graduate students, using a task-oriented questionnaire developed and validated in the University of Malmö, Sweden. 50 post-graduate students in the Athens University School of Dentistry in April 2005 took part in the study. A total competence score of 0-49 was calculated. Socio-demographic characteristics were recorded. Attitudes towards computer use were assessed. Descriptive statistics and linear regression modeling were employed for data analysis. Total competence score was normally distributed (Shapiro-Wilk test: W = 0.99, V = 0.40, P = 0.97) and ranged from 5 to 42.5, with a mean of 22.6 (+/-8.4). Multivariate analysis revealed 'gender', 'e-mail ownership' and 'enrollment in non-clinical programs' as significant predictors of computer literacy. Conclusively, computer literacy of Greek post-graduate dental students was increased amongst males, students in non-clinical programs and those with more positive attitudes towards the implementation of computer assisted learning.
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Resumo:
If quantum interference patterns in the hearts of polycyclic aromatic hydrocarbons (PAHs) could be isolated and manipulated, then a significant step towards realizing the potential of single-molecule electronics would be achieved. Here we demonstrate experimentally and theoretically that a simple, parameter-free, analytic theory of interference patterns evaluated at the mid-point of the HOMO-LUMO gap (referred to as M-functions) correctly predicts conductance ratios of molecules with pyrene, naphthalene, anthracene, anthanthrene or azulene hearts. M-functions provide new design strategies for identifying molecules with phase-coherent logic functions and enhancing the sensitivity of molecular-scale interferometers.
Resumo:
Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.
Resumo:
BACKGROUND: Painful invasive procedures are frequently performed on preterm infants admitted to a neonatal intensive care unit (NICU). The aim of the present study was to investigate current pain management in Austrian, German and Swiss NICU and to identify factors associated with improved pain management in preterm infants. METHODS: A questionnaire was sent to all Austrian, German and Swiss pediatric hospitals with an NICU (n = 370). Pain assessment and documentation, use of analgesics for 13 painful procedures, presence of written guidelines for pain management and the use of 12 analgesics and sedatives were examined. RESULTS: A total of 225 units responded (61%). Pain assessment and documentation and frequent analgesic therapy for painful procedures were performed more often in units using written guidelines for pain management and in those treating >50 preterm infants at <32 weeks of gestation per year. This was also the case for the use of opioid analgesics and sucrose solution. Non-opioid analgesics were used more often in smaller units and in units with written guidelines. There was a broad variation in dosage of analgesics and sedatives within all groups. CONCLUSION: Pain assessment, documentation of pain and analgesic therapy are more frequently performed in NICU with written guidelines for pain management and in larger units with more than 50 preterm infants at <32 weeks of gestation per year.
Resumo:
The development of electrophoretic computer models and their use for simulation of electrophoretic processes has increased significantly during the last few years. Recently, GENTRANS and SIMUL5 were extended with algorithms that describe chemical equilibria between solutes and a buffer additive in a fast 1:1 interaction process, an approach that enables simulation of the electrophoretic separation of enantiomers. For acidic cationic systems with sodium and H3 0(+) as leading and terminating components, respectively, acetic acid as counter component, charged weak bases as samples, and a neutral CD as chiral selector, the new codes were used to investigate the dynamics of isotachophoretic adjustment of enantiomers, enantiomer separation, boundaries between enantiomers and between an enantiomer and a buffer constituent of like charge, and zone stability. The impact of leader pH, selector concentration, free mobility of the weak base, mobilities of the formed complexes and complexation constants could thereby be elucidated. For selected examples with methadone enantiomers as analytes and (2-hydroxypropyl)-β-CD as selector, simulated zone patterns were found to compare well with those monitored experimentally in capillary setups with two conductivity detectors or an absorbance and a conductivity detector. Simulation represents an elegant way to provide insight into the formation of isotachophoretic boundaries and zone stability in presence of complexation equilibria in a hitherto inaccessible way.
Resumo:
By forcing, we give a direct interpretation of inline image into Avigad's inline image. To the best of the author's knowledge, this is one of the simplest applications of forcing to “real problems”.