23 resultados para Computational analysis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Stemmatology, or the reconstruction of the transmission history of texts, is a field that stands particularly to gain from digital methods. Many scholars already take stemmatic approaches that rely heavily on computational analysis of the collated text (e.g. Robinson and O’Hara 1996; Salemans 2000; Heikkilä 2005; Windram et al. 2008 among many others). Although there is great value in computationally assisted stemmatology, providing as it does a reproducible result and allowing access to the relevant methodological process in related fields such as evolutionary biology, computational stemmatics is not without its critics. The current state-of-the-art effectively forces scholars to choose between a preconceived judgment of the significance of textual differences (the Lachmannian or neo-Lachmannian approach, and the weighted phylogenetic approach) or to make no judgment at all (the unweighted phylogenetic approach). Some basis for judgment of the significance of variation is sorely needed for medieval text criticism in particular. By this, we mean that there is a need for a statistical empirical profile of the text-genealogical significance of the different sorts of variation in different sorts of medieval texts. The rules that apply to copies of Greek and Latin classics may not apply to copies of medieval Dutch story collections; the practices of copying authoritative texts such as the Bible will most likely have been different from the practices of copying the Lives of local saints and other commonly adapted texts. It is nevertheless imperative that we have a consistent, flexible, and analytically tractable model for capturing these phenomena of transmission. In this article, we present a computational model that captures most of the phenomena of text variation, and a method for analysis of one or more stemma hypotheses against the variation model. We apply this method to three ‘artificial traditions’ (i.e. texts copied under laboratory conditions by scholars to study the properties of text variation) and four genuine medieval traditions whose transmission history is known or deduced in varying degrees. Although our findings are necessarily limited by the small number of texts at our disposal, we demonstrate here some of the wide variety of calculations that can be made using our model. Certain of our results call sharply into question the utility of excluding ‘trivial’ variation such as orthographic and spelling changes from stemmatic analysis.
Resumo:
We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decision making based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.
Resumo:
OBJECTIVE The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. PATIENT A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. DESIGN, METHODS AND RESULTS Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. CONCLUSIONS STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype.
Resumo:
Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.
Resumo:
Formative cell divisions are critical for multicellular patterning. In the early plant embryo, such divisions follow from orienting the division plane. A major unanswered question is how division plane orientation is genetically controlled, and in particular whether this relates to cell geometry. We have generated a complete 4D map of early Arabidopsis embryogenesis and used computational analysis to demonstrate that several divisions follow a rule that uses the smallest wall area going through the center of the cell. In other cases, however, cell division clearly deviates from this rule, which invariably leads to asymmetric cell division. By analyzing mutant embryos and through targeted genetic perturbation, we show that response to the hormone auxin triggers a deviation from the ``shortest wall'' rule. Our work demonstrates that a simple default rule couples division orientation to cell geometry in the embryo and that genetic regulation can create patterns by overriding the default rule.
Resumo:
Establishment of phylogenetic relationships remains a challenging task because it is based on computational analysis of genomic hot spots that display species-specific sequence variations. Here, we identify a species-specific thymine-to-guanine sequence variation in the Glrb gene which gives rise to species-specific splice donor sites in the Glrb genes of mouse and bushbaby. The resulting splice insert in the receptor for the inhibitory neurotransmitter glycine (GlyR) conveys synaptic receptor clustering and specific association with a particular synaptic plasticity-related splice variant of the postsynaptic scaffold protein gephyrin. This study identifies a new genomic hot spot which contributes to phylogenetic diversification of protein function and advances our understanding of phylogenetic relationships.
Resumo:
We present a real-world problem that arises in security threat detection applications. The problem consists of deploying mobile detectors on moving units that follow predefined routes. Examples of such units are buses, coaches, and trolleys. Due to a limited budget not all available units can be equipped with a detector. The goal is to equip a subset of units such that the utility of the resulting coverage is maximized. Existing methods for detector deployment are designed to place detectors in fixed locations and are therefore not applicable to the problem considered here. We formulate the planning problem as a binary linear program and present a coverage heuristic for generating effective deployments in short CPU time. The heuristic has theoretical performance guarantees for important special cases of the problem. The effectiveness of the coverage heuristic is demonstrated in a computational analysis based on 28 instances that we derived from real-world data.
Resumo:
BACKGROUND Ductal carcinoma in situ (DCIS) is a noninvasive breast lesion with uncertain risk for invasive progression. Usual care (UC) for DCIS consists of treatment upon diagnosis, thus potentially overtreating patients with low propensity for progression. One strategy to reduce overtreatment is active surveillance (AS), whereby DCIS is treated only upon detection of invasive disease. Our goal was to perform a quantitative evaluation of outcomes following an AS strategy for DCIS. METHODS Age-stratified, 10-year disease-specific cumulative mortality (DSCM) for AS was calculated using a computational risk projection model based upon published estimates for natural history parameters, and Surveillance, Epidemiology, and End Results data for outcomes. AS projections were compared with the DSCM for patients who received UC. To quantify the propagation of parameter uncertainty, a 95% projection range (PR) was computed, and sensitivity analyses were performed. RESULTS Under the assumption that AS cannot outperform UC, the projected median differences in 10-year DSCM between AS and UC when diagnosed at ages 40, 55, and 70 years were 2.6% (PR = 1.4%-5.1%), 1.5% (PR = 0.5%-3.5%), and 0.6% (PR = 0.0%-2.4), respectively. Corresponding median numbers of patients needed to treat to avert one breast cancer death were 38.3 (PR = 19.7-69.9), 67.3 (PR = 28.7-211.4), and 157.2 (PR = 41.1-3872.8), respectively. Sensitivity analyses showed that the parameter with greatest impact on DSCM was the probability of understaging invasive cancer at diagnosis. CONCLUSION AS could be a viable management strategy for carefully selected DCIS patients, particularly among older age groups and those with substantial competing mortality risks. The effectiveness of AS could be markedly improved by reducing the rate of understaging.
Resumo:
Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity.
Resumo:
Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computational models of normal and pathological joints were developed based on variations of morphological parameters of the femoral head (Alpha angle) and acetabulum (CE angle). The Alpha angle was varied between 40 degrees (normal joint) and 80 degrees (cam joint). The CE angle was varied between 0 degrees (dysplastic joint) and 40 degrees (pincer joint). Dynamic loads and motions for walking and standing to sitting were applied to all joint configurations. Contact pressures and stresses were calculated and crosscompared to evaluate the influence of morphology. The stresses in the soft tissues depended strongly on the head and acetabular geometry. For the dysplastic joint, walking produced high acetabular rim stresses. Conversely, for impinging joints, standing-to-sitting activities that involved extensive motion were critical, inducing excessive distortion and shearing of the tissue-bone interface. Zones with high von Mises stresses corresponded with clinically observed damage zones in the acetabular cartilage and labrum. Hip joint morphological parameters that minimized were 20 degrees
Resumo:
Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator) in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s), there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid. BETASCAN is publicly accessible on the Web at http://betascan.csail.mit.edu.
Resumo:
We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.
Resumo:
The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .
Resumo:
Computational network analysis provides new methods to analyze the human connectome. Brain structural networks can be characterized by global and local metrics that recently gave promising insights for diagnosis and further understanding of neurological, psychiatric and neurodegenerative disorders. In order to ensure the validity of results in clinical settings the precision and repeatability of the networks and the associated metrics must be evaluated. In the present study, nineteen healthy subjects underwent two consecutive measurements enabling us to test reproducibility of the brain network and its global and local metrics. As it is known that the network topology depends on the network density, the effects of setting a common density threshold for all networks were also assessed. Results showed good to excellent repeatability for global metrics, while for local metrics it was more variable and some metrics were found to have locally poor repeatability. Moreover, between subjects differences were slightly inflated when the density was not fixed. At the global level, these findings confirm previous results on the validity of global network metrics as clinical biomarkers. However, the new results in our work indicate that the remaining variability at the local level as well as the effect of methodological characteristics on the network topology should be considered in the analysis of brain structural networks and especially in networks comparisons.
Resumo:
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.