53 resultados para Compositional data analysis-roots in geosciences
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A workshop providing an introduction to Bayesian data analysis and hypothesis testing using R, Jags and the BayesFactor package.
Resumo:
Background In Switzerland there are about 150,000 equestrians. Horse related injuries, including head and spinal injuries, are frequently treated at our level I trauma centre. Objectives To analyse injury patterns, protective factors, and risk factors related to horse riding, and to define groups of safer riders and those at greater risk Methods We present a retrospective and a case-control survey at conducted a tertiary trauma centre in Bern, Switzerland. Injured equestrians from July 2000 - June 2006 were retrospectively classified by injury pattern and neurological symptoms. Injured equestrians from July-December 2008 were prospectively collected using a questionnaire with 17 variables. The same questionnaire was applied in non-injured controls. Multiple logistic regression was performed, and combined risk factors were calculated using inference trees. Results Retrospective survey A total of 528 injuries occured in 365 patients. The injury pattern revealed as follows: extremities (32%: upper 17%, lower 15%), head (24%), spine (14%), thorax (9%), face (9%), pelvis (7%) and abdomen (2%). Two injuries were fatal. One case resulted in quadriplegia, one in paraplegia. Case-control survey 61 patients and 102 controls (patients: 72% female, 28% male; controls: 63% female, 37% male) were included. Falls were most frequent (65%), followed by horse kicks (19%) and horse bites (2%). Variables statistically significant for the controls were: Older age (p = 0.015), male gender (p = 0.04) and holding a diploma in horse riding (p = 0.004). Inference trees revealed typical groups less and more likely to suffer injury. Conclusions Experience with riding and having passed a diploma in horse riding seem to be protective factors. Educational levels and injury risk should be graded within an educational level-injury risk index.
Resumo:
A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.
Resumo:
OBJECT: In this study, 1H magnetic resonance (MR) spectroscopy was prospectively tested as a reliable method for presurgical grading of neuroepithelial brain tumors. METHODS: Using a database of tumor spectra obtained in patients with histologically confirmed diagnoses, 94 consecutive untreated patients were studied using single-voxel 1H spectroscopy (point-resolved spectroscopy; TE 135 msec, TE 135 msec, TR 1500 msec). A total of 90 tumor spectra obtained in patients with diagnostic 1H MR spectroscopy examinations were analyzed using commercially available software (MRUI/VARPRO) and classified using linear discriminant analysis as World Health Organization (WHO) Grade I/II, WHO Grade III, or WHO Grade IV lesions. In all cases, the classification results were matched with histopathological diagnoses that were made according to the WHO classification criteria after serial stereotactic biopsy procedures or open surgery. Histopathological studies revealed 30 Grade I/II tumors, 29 Grade III tumors, and 31 Grade IV tumors. The reliability of the histological diagnoses was validated considering a minimum postsurgical follow-up period of 12 months (range 12-37 months). Classifications based on spectroscopic data yielded 31 tumors in Grade I/II, 32 in Grade III, and 27 in Grade IV. Incorrect classifications included two Grade II tumors, one of which was identified as Grade III and one as Grade IV; two Grade III tumors identified as Grade II; two Grade III lesions identified as Grade IV; and six Grade IV tumors identified as Grade III. Furthermore, one glioblastoma (WHO Grade IV) was classified as WHO Grade I/II. This represents an overall success rate of 86%, and a 95% success rate in differentiating low-grade from high-grade tumors. CONCLUSIONS: The authors conclude that in vivo 1H MR spectroscopy is a reliable technique for grading neuroepithelial brain tumors.
Resumo:
Aims: The reported rate of stent thrombosis (ST) after drug-eluting stent (DES) implantation varies among registries. To investigate differences in baseline characteristics and clinical outcome in European and Japanese all-comers registries, we performed a pooled analysis of patient-level data. Methods and results: The j-Cypher registry (JC) is a multicentre observational study conducted in Japan, including 12,824 patients undergoing SES implantation. From the Bern-Rotterdam registry (BR) enrolled at two academic hospitals in Switzerland and the Netherlands, 3,823 patients with SES were included in the current analysis. Patients in BR were younger, more frequently smokers and presented more frequently with ST-elevation myocardial infarction (MI). Conversely, JC patients more frequently had diabetes and hypertension. At five years, the definite ST rate was significantly lower in JC than BR (JC 1.6% vs. BR 3.3%, p<0.001), while the unadjusted mortality tended to be lower in BR than in JC (BR 13.2% vs. JC 14.4%, log-rank p=0.052). After adjustment, the j-Cypher registry was associated with a significantly lower risk of all-cause mortality (HR 0.56, 95% CI: 0.49-0.64) as well as definite stent thrombosis (HR 0.46, 95% CI: 0.35-0.61). Conclusions: The baseline characteristics of the two large registries were different. After statistical adjustment, JC was associated with lower mortality and ST.
Resumo:
Background Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. Aim of Study The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. Methods The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Results Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint “death or weight loss of more than 5%”. Conclusion We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD.
Resumo:
Advances in the area of mobile and wireless communication for healthcare (m-Health) along with the improvements in information science allow the design and development of new patient-centric models for the provision of personalised healthcare services, increase of patient independence and improvement of patient's self-control and self-management capabilities. This paper comprises a brief overview of the m-Health applications towards the self-management of individuals with diabetes mellitus and the enhancement of their quality of life. Furthermore, the design and development of a mobile phone application for Type 1 Diabetes Mellitus (T1DM) self-management is presented. The technical evaluation of the application, which permits the management of blood glucose measurements, blood pressure measurements, insulin dosage, food/drink intake and physical activity, has shown that the use of the mobile phone technologies along with data analysis methods might improve the self-management of T1DM.
Does published orthodontic research account for clustering effects during statistical data analysis?
Resumo:
In orthodontics, multiple site observations within patients or multiple observations collected at consecutive time points are often encountered. Clustered designs require larger sample sizes compared to individual randomized trials and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this study to assess to what degree clustering effects are considered during design and data analysis in the three major orthodontic journals. The contents of the most recent 24 issues of the American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), Angle Orthodontist (AO), and European Journal of Orthodontics (EJO) from December 2010 backwards were hand searched. Articles with clustering effects and whether the authors accounted for clustering effects were identified. Additionally, information was collected on: involvement of a statistician, single or multicenter study, number of authors in the publication, geographical area, and statistical significance. From the 1584 articles, after exclusions, 1062 were assessed for clustering effects from which 250 (23.5 per cent) were considered to have clustering effects in the design (kappa = 0.92, 95 per cent CI: 0.67-0.99 for inter rater agreement). From the studies with clustering effects only, 63 (25.20 per cent) had indicated accounting for clustering effects. There was evidence that the studies published in the AO have higher odds of accounting for clustering effects [AO versus AJODO: odds ratio (OR) = 2.17, 95 per cent confidence interval (CI): 1.06-4.43, P = 0.03; EJO versus AJODO: OR = 1.90, 95 per cent CI: 0.84-4.24, non-significant; and EJO versus AO: OR = 1.15, 95 per cent CI: 0.57-2.33, non-significant). The results of this study indicate that only about a quarter of the studies with clustering effects account for this in statistical data analysis.
Resumo:
OBJECTIVE To investigate whether it is valid to combine follow-up and change data when conducting meta-analyses of continuous outcomes. STUDY DESIGN AND SETTING Meta-epidemiological study of randomized controlled trials in patients with osteoarthritis of the knee/hip, which assessed patient-reported pain. We calculated standardized mean differences (SMDs) based on follow-up and change data, and pooled within-trial differences in SMDs. We also derived pooled SMDs indicating the largest treatment effect within a trial (optimistic selection of SMDs) and derived pooled SMDs from the estimate indicating the smallest treatment effect within a trial (pessimistic selection of SMDs). RESULTS A total of 21 meta-analyses with 189 trials with 292 randomized comparisons in 41,256 patients were included. On average, SMDs were 0.04 standard deviation units more beneficial when follow-up values were used (difference in SMDs: -0.04; 95% confidence interval: -0.13, 0.06; P=0.44). In 13 meta-analyses (62%), there was a relevant difference in clinical and/or significance level between optimistic and pessimistic pooled SMDs. CONCLUSION On average, there is no relevant difference between follow-up and change data SMDs, and combining these estimates in meta-analysis is generally valid. Decision on which type of data to use when both follow-up and change data are available should be prespecified in the meta-analysis protocol.