28 resultados para Composite materials -- Simulation methods
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Summary The first part of this review examined ISO approval requirements and in vitro testing. In the second part, non-standardized test methods for composite materials are presented and discussed. Physical tests are primarily described. Analyses of surface gloss and alterations, as well as aging simulations of dental materials are presented. Again, the importance of laboratory tests in determining clinical outcomes is evaluated. Differences in the measurement protocols of the various testing institutes and how these differences can in?uence the results are also discussed. Because there is no standardization of test protocols, the values determined by different institutes cannot be directly compared. However, the ranking of the tested materials should be the same if a valid protocol is applied by different institutes. The modulus of elasticity, the expansion after water sorption, and the polishability of the material are all clinically relevant, whereas factors measured by other test protocols may have no clinical correlation. The handling properties of the materials are highly dependent on operators' preferences. Therefore, no standard values can be given.
Resumo:
Sequential insertion of different dyes into the 1D channels of zeolite L (ZL) leads to supramolecular sandwich structures and allows the formation of sophisticated antenna composites for light harvesting, transport, and trapping. The synthesis and properties of dye molecules, host materials, composites, and composites embedded in polymer matrices, including two- and three-color antenna systems, are described. Perylene diimide (PDI) dyes are an important class of chromophores and are of great interest for the synthesis of artificial antenna systems. They are especially well suited to advancing our understanding of the structure–transport relationship in ZL because their core fits tightly through the 12-ring channel opening. The substituents at both ends of the PDIs can be varied to a large extent without influencing their electronic absorption and fluorescence spectra. The intercalation/insertion of 17 PDIs, 2 terrylenes, and 1 quaterrylene into ZL are compared and their interactions with the inner surface of the ZL nanochannels discussed. ZL crystals of about 500 nm in size have been used because they meet the criteria that must be respected for the preparation of antenna composites for light harvesting, transport, and trapping. The photostability of dyes is considerably improved by inserting them into the ZL channels because the guests are protected by being confined. Plugging the channel entrances, so that the guests cannot escape into the environment is a prerequisite for achieving long-term stability of composites embedded in an organic matrix. Successful methods to achieve this goal are described. Finally, the embedding of dye–ZL composites in polymer matrices, while maintaining optical transparency, is reported. These results facilitate the rational design of advanced dye–zeolite composite materials and provide powerful tools for further developing and understanding artificial antenna systems, which are among the most fascinating subjects of current photochemistry and photophysics.
Resumo:
The first part of this three-part review on the relevance of laboratory testing of composites and adhesives deals with approval requirements for composite materials. We compare the in vivo and in vitro literature data and discuss the relevance of in vitro analyses. The standardized ISO protocols are presented, with a focus on the evaluation of physical parameters. These tests all have a standardized protocol that describes the entire test set-up. The tests analyse flexural strength, depth of cure, susceptibility to ambient light, color stability, water sorption and solubility, and radiopacity. Some tests have a clinical correlation. A high flexural strength, for instance, decreases the risk of fractures of the marginal ridge in posterior restorations and incisal edge build-ups of restored anterior teeth. Other tests do not have a clinical correlation or the threshold values are too low, which results in an approval of materials that show inferior clinical properties (e.g., radiopacity). It is advantageous to know the test set-ups and the ideal threshold values to correctly interpret the material data. Overall, however, laboratory assessment alone cannot ensure the clinical success of a product.
Resumo:
PURPOSE In the present case series, the authors report on seven cases of erosively worn dentitions (98 posterior teeth) which were treated with direct resin composite. MATERIALS AND METHODS In all cases, both arches were restored by using the so-called stamp technique. All patients were treated with standardized materials and protocols. Prior to treatment, a waxup was made on die-cast models to build up the loss of occlusion as well as ensure the optimal future anatomy and function of the eroded teeth to be restored. During treatment, teeth were restored by using templates of silicone (ie, two "stamps," one on the vestibular, one on the oral aspect of each tooth), which were filled with resin composite in order to transfer the planned, future restoration (ie, in the shape of the waxup) from the extra- to the intraoral situation. Baseline examinations were performed in all patients after treatment, and photographs as well as radiographs were taken. To evaluate the outcome, the modified United States Public Health Service criteria (USPHS) were used. RESULTS The patients were re-assessed after a mean observation time of 40 months (40.8 ± 7.2 months). The overall outcome of the restorations was good, and almost exclusively "Alpha" scores were given. Only the marginal integrity and the anatomical form received a "Charlie" score (10.2%) in two cases. CONCLUSION Direct resin composite restorations made with the stamp technique are a valuable treatment option for restoring erosively worn dentitions.
Resumo:
OBJECTIVES The aim was to study the impact of the defect size of endodontically treated incisors compared to dental implants as abutments on the survival of zirconia two-unit anterior cantilever-fixed partial dentures (2U-FPDs) during 10-year simulation. MATERIALS AND METHODS Human maxillary central incisors were endodontically treated and divided into three groups (n = 24): I, access cavities rebuilt with composite core; II, teeth decoronated and restored with composite; and III as II supported by fiber posts. In group IV, implants with individual zirconia abutments were used. Specimens were restored with zirconia 2U-FPDs and exposed to two sequences of thermal cycling and mechanical loading. Statistics: Kaplan-Meier; log-rank tests. RESULTS During TCML in group I two tooth fractures and two debondings with chipping were found. Solely chippings occurred in groups II (2×), IV (2×), and III (1×). No significant different survival was found for the different abutments (p = 0.085) or FPDs (p = 0.526). Load capability differed significantly between groups I (176 N) and III (670 N), and III and IV (324 N) (p < 0.024). CONCLUSION Within the limitations of an in vitro study, it can be concluded that zirconia-framework 2U-FPDs on decoronated teeth with/without post showed comparable in vitro reliability as restorations on implants. The results indicated that restorations on teeth with only access cavity perform worse in survival and linear loading. CLINICAL RELEVANCE Even severe defects do not justify per se a replacement of this particular tooth by a dental implant from load capability point of view.
Resumo:
PURPOSE: To compare objective fellow and expert efficiency indices for an interventional radiology renal artery stenosis skill set with the use of a high-fidelity simulator. MATERIALS AND METHODS: The Mentice VIST simulator was used for three different renal artery stenosis simulations of varying difficulty, which were used to grade performance. Fellows' indices at three intervals throughout 1 year were compared to expert baseline performance. Seventy-four simulated procedures were performed, 63 of which were captured as audiovisual recordings. Three levels of fellow experience were analyzed: 1, 6, and 12 months of dedicated interventional radiology fellowship. The recordings were compiled on a computer workstation and analyzed. Distinct measurable events in the procedures were identified with task analysis, and data regarding efficiency were extracted. Total scores were calculated as the product of procedure time, fluoroscopy time, tools, and contrast agent volume. The lowest scores, which reflected efficient use of tools, radiation, and time, were considered to indicate proficiency. Subjective analysis of participants' procedural errors was not included in this analysis. RESULTS: Fellows' mean scores diminished from 1 month to 12 months (42,960 at 1 month, 18,726 at 6 months, and 9,636 at 12 months). The experts' mean score was 4,660. In addition, the range of variance in score diminished with increasing experience (from a range of 5,940-120,156 at 1 month to 2,436-85,272 at 6 months and 2,160-32,400 at 12 months). Expert scores ranged from 1,450 to 10,800. CONCLUSIONS: Objective efficiency indices for simulated procedures can demonstrate scores directly comparable to the level of clinical experience.
Resumo:
OBJECTIVES To evaluate the effect of a tin-containing fluoride (Sn/F) mouth rinse on microtensile bond strength (μTBS) between resin composite and erosively demineralised dentin. MATERIALS AND METHODS Dentin of 120 human molars was erosively demineralised using a 10-day cyclic de- and remineralisation model. For 40 molars, the model comprised erosive demineralisation only; for another 40, the model included treatment with a NaF solution; and for yet another 40, the model included treatment with a Sn/F mouth rinse. In half of these molars (n = 20), the demineralised organic matrix was continuously removed by collagenase. Silicon carbide paper-ground, non-erosively demineralised molars served as control (n = 20). Subsequently, μTBS of Clearfil SE/Filtek Z250 to the dentin was measured, and failure mode was determined. Additionally, surfaces were evaluated using SEM and EDX. RESULTS Compared to the non-erosively demineralised control, erosive demineralisation resulted in significantly lower μTBS regardless of the removal of demineralised organic matrix. Treatment with NaF increased μTBS, but the level of μTBS obtained by the non-erosively demineralised control was only reached when the demineralised organic matrix had been removed. The Sn/F mouth rinse together with removal of demineralised organic matrix led to significantly higher µTBS than did the non-erosively demineralised control. The Sn/F mouth rinse yielded higher μTBS than did the NaF solution. CONCLUSIONS Treatment of erosively demineralised dentin with a NaF solution or a Sn/F mouth rinse increased the bond strength of resin composite. CLINICAL RELEVANCE Bond strength of resin composite to eroded dentin was not negatively influenced by treatment with a tin-containing fluoride mouth rinse.
Resumo:
PURPOSE To determine the best-performing combination of three core buildup materials and three bonding materials based on their bond strength to ceramic blocks in vitro. MATERIALS AND METHODS The materials used for core buildup were a composite (Tetric EvoCeram), a compomer (Compoglass F), and a glass-ionomer cement (Ketac Fil Plus), and for bonding, a three-step etch-and-rinse adhesive (Syntac), a two-step etch-and-rinse adhesive (ExciTE), and a single-step system (RelyX Unicem). Bond strength to ceramic blocks was determined by shear bond strength testing. Fracture behavior was evaluated by scanning electron microscopy. RESULTS The highest adhesive values between buildup and ceramic were obtained using the materials Compoglass F and Syntac, followed by Compoglass F and ExciTE. Among the two other core buildups, Tetric EvoCeram performed better than Ketac Fil Plus, which was independent of the bonding materials. Adhesive fractures were characteristically observed with Syntac and ExciTE, and cohesive fractures were characteristically observed with RelyX Unicem. CONCLUSION These data show that compomers bonded with a multistep adhesive system achieved statistically significantly higher shear bond strength than composites and glass-ionomer cements. Within the limitations inherent to this in vitro study, the use of compomers for core buildup can be recommended.
Resumo:
Susceptibility of different restorative materials to toothbrush abrasion and coffee staining Objective: The aim of this study was to evaluate the susceptibility of different restorative materials to surface alterations after an aging simulation. Methods: Specimens (n=15 per material) of five different restorative materials (CER: ceramic/Vita Mark II; EMP: composite/Empress Direct; LAV: CAD/CAM composite/Lava Ultimate; COM: prefabricated composite/Componeer; VEN: prefabricated composite/Venear) were produced. Whereas CER was glazed, EMP and LAV were polished with silicon polishers, and COM and VEN were left untreated. Mean roughness (Ra and Rz) and colorimetric parameters (L*a*b*), expressed as colour change (E), were measured. The specimens underwent an artificial aging procedure. After baseline measurements (M1), the specimens were successively immersed for 24 hours in coffee (M2), abraded in a toothbrushing simulator (M3), immersed in coffee (M4), abraded (M5) and repeatedly abraded (M6). After each aging procedure (M2-M6), surface roughness and colorimetric parameters were recorded. Differences between the materials regarding Ra/Rz and E were analysed with a nonparametric ANOVA analysis. The level of significance was set at α=0.05. Results: The lowest roughness values were obtained for CER. A significant increase in Ra was detected for EMP, COM and VEN compared to CER. The Ra/Rz values were found to be highly significantly different for the materials and measuring times (M) (p<0.0001). Regarding E most alterations were found for EMP and COM, whereas CER and LAV remained mostly stable. The E values were significantly different for the materials and M (p<0.0001). Conclusion: The ceramic and the CAD/CAM composite were the most stable materials with regard to roughness and colour change and the only materials that resulted in Ra values below 0.2 μm (the clinically relevant threshold). Venears and Componeers were more inert than the direct composite material and thus might be an alternative for extensive restorations in the aesthetic zone.
Resumo:
PURPOSE To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. MATERIALS AND METHODS A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). RESULTS Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). CONCLUSION Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.
Resumo:
PURPOSE: The advent of imaging software programs has proved to be useful for diagnosis, treatment planning, and outcome measurement, but precision of 3-dimensional (3D) surgical simulation still needs to be tested. This study was conducted to determine whether the virtual surgery performed on 3D models constructed from cone-beam computed tomography (CBCT) can correctly simulate the actual surgical outcome and to validate the ability of this emerging technology to recreate the orthognathic surgery hard tissue movements in 3 translational and 3 rotational planes of space. MATERIALS AND METHODS: Construction of pre- and postsurgery 3D models from CBCTs of 14 patients who had combined maxillary advancement and mandibular setback surgery and 6 patients who had 1-piece maxillary advancement surgery was performed. The postsurgery and virtually simulated surgery 3D models were registered at the cranial base to quantify differences between simulated and actual surgery models. Hotelling t tests were used to assess the differences between simulated and actual surgical outcomes. RESULTS: For all anatomic regions of interest, there was no statistically significant difference between the simulated and the actual surgical models. The right lateral ramus was the only region that showed a statistically significant, but small difference when comparing 2- and 1-jaw surgeries. CONCLUSIONS: Virtual surgical methods were reliably reproduced. Oral surgery residents could benefit from virtual surgical training. Computer simulation has the potential to increase predictability in the operating room.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.