6 resultados para Clarke, Mary Anne Thompson, 1776-1852.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.
Resumo:
Leishmaniaparasites cause a broad range of disease, with cutaneous afflictions being, by far, the most prevalent. Variations in disease severity and symptomatic spectrum are mostly associated to parasite species. One risk factor for the severity and emergence of leishmaniasis is immunosuppression, usually arising by coinfection of the patient with human immunodeficiency virus (HIV). Interestingly, several species ofLeishmaniahave been shown to bear an endogenous cytoplasmic dsRNA virus (LRV) of theTotiviridaefamily, and recently we correlated the presence of LRV1 withinLeishmaniaparasites to an exacerbation murine leishmaniasis and with an elevated frequency of drug treatment failures in humans. This raises the possibility of further exacerbation of leishmaniasis in the presence of both viruses, and here we report a case of cutaneous leishmaniasis caused byLeishmania braziliensisbearing LRV1 with aggressive pathogenesis in an HIV patient. LRV1 was isolated and partially sequenced from skin and nasal lesions. Genetic identity of both sequences reinforced the assumption that nasal parasites originate from primary skin lesions. Surprisingly, combined antiretroviral therapy did not impact the devolution ofLeishmaniainfection. TheLeishmaniainfection was successfully treated through administration of liposomal amphotericin B.
Resumo:
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.