13 resultados para Chromium reduction destillation, cold single step
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE Leakage is the most common complication of percutaneous cement augmentation of the spine. The viscosity of the polymethylmethacrylate (PMMA) cement is strongly correlated with the likelihood of cement leakage. We hypothesized that cement leakage can be reduced by sequential cement injection in a vertebroplasty model. METHODS A standardized vertebral body substitute model, consisting of aluminum oxide foams coated by acrylic cement with a preformed leakage path, simulating a ventral vein, was developed. Three injection techniques of 6 ml PMMA were assessed: injection in one single step (all-in-one), injection of 1 ml at the first and 5 ml at the second step with 1 min latency in-between (two-step), and sequential injection of 0.5 ml with 1-min latency between the sequences (sequential). Standard PMMA vertebroplasty cement was used; each injection type was tested on ten vertebral body substitute models with two possible leakage paths per model. Leakage was assessed by radiographs using a zonal graduation: intraspongious = no leakage and extracortical = leakage. RESULTS The leakage rate was significantly lower in the "sequential" technique (2/20 leakages) followed by "two-step" (15/20) and "all-in-one" (20/20) techniques (p < 0.001). The RR for a cement leakage was 10.0 times higher in the "all-in-one" compared to the "sequential" group (95 % confidence intervals 2.7-37.2; p < 0.001). CONCLUSIONS The sequential cement injection is a simple approach to minimize the risk for leakage. Taking advantage of the temperature gradient between body and room temperature, it is possible to increase the cement viscosity inside the vertebra while keeping it low in the syringe. Using sequential injection of small cement volumes, further leakage paths are blocked before further injection of the low-viscosity cement.
Resumo:
BACKGROUND The variant Creutzfeldt-Jakob disease incidence peaked a decade ago and has since declined. Based on epidemiologic evidence, the causative agent, pathogenic prion, has not constituted a tangible contamination threat to large-scale manufacturing of human plasma-derived proteins. Nonetheless, manufacturers have studied the prion removal capabilities of various manufacturing steps to better understand product safety. Collectively analyzing the results could reveal experimental reproducibility and detect trends and mechanisms driving prion removal. STUDY DESIGN AND METHODS Plasma Protein Therapeutics Association member companies collected more than 200 prion removal studies on plasma protein manufacturing steps, including precipitation, adsorption, chromatography, and filtration, as well as combined steps. The studies used a range of model spiking agents and bench-scale process replicas. The results were grouped based on key manufacturing variables to identify factors impacting removal. The log reduction values of a group are presented for comparison. RESULTS Overall prion removal capacities evaluated by independent groups were in good agreement. The removal capacity evaluated using biochemical assays was consistent with prion infectivity removal measured by animal bioassays. Similar reduction values were observed for a given step using various spiking agents, except highly purified prion protein in some circumstances. Comparison between combined and single-step studies revealed complementary or overlapping removal mechanisms. Steps with high removal capacities represent the conditions where the physiochemical differences between prions and therapeutic proteins are most significant. CONCLUSION The results support the intrinsic ability of certain plasma protein manufacturing steps to remove prions in case of an unlikely contamination, providing a safeguard to products.
Resumo:
Over the last decade, the end-state comfort effect (e.g., Rosenbaum et al., 2006) has received a considerable amount of attention. However, some of the underlying mechanisms are still to be investigated, amongst others, how sequential planning affects end-state comfort and how this effect develops over learning. In a two-step sequencing task, e.g., postural comfort can be planned on the intermediate position (next state) or on the actual end position (final state). It might be hypothesized that, in initial acquisition, next state’s comfort is crucial for action planning but that, in the course of learning, final state’s comfort is taken more and more into account. To test this hypothesis, a variant of Rosenbaum’s vertical stick transportation task was used. Participants (N = 16, right-handed) received extensive practice on a two-step transportation task (10,000 trials over 12 sessions). From the initial position on the middle stair of a staircase in front of the participant, the stick had to be transported either 20 cm upwards and then 40 cm downwards or 20 cm downwards and then 40 cm upwards (N = 8 per subgroup). Participants were supposed to produce fluid movements without changing grasp. In the pre- and posttest, participants were tested on both two-step sequencing tasks as well as on 20 cm single-step upwards and downwards movements (10 trials per condition). For the test trials, grasp height was calculated kinematographically. In the pretest, large end/next/final-state comfort effects for single-step transportation tasks and large next-state comfort effects for sequenced tasks were found. However, no change in grasp height from pre- to posttest could be revealed. Results show that, in vertical stick transportation sequences, the final state is not taken into account when planning grasp height. Instead, action planning seems to be solely based on aspects of the next action goal that is to be reached.
Resumo:
OBJECTIVE: The aim of this study was to assess the microcirculatory and metabolic consequences of reduced mesenteric blood flow. DESIGN: Prospective, controlled animal study. SETTING: The surgical research unit of a university hospital. SUBJECTS: A total of 13 anesthetized and mechanically ventilated pigs. INTERVENTIONS: Pigs were subjected to stepwise mesenteric blood flow reduction (15% in each step, n = 8) or served as controls (n = 5). Superior mesenteric arterial blood flow was measured with ultrasonic transit time flowmetry, and mucosal and muscularis microcirculatory perfusion in the small bowel were each measured with three laser Doppler flow probes. Small-bowel intramucosal Pco2 was measured by tonometry, and glucose, lactate (L), and pyruvate (P) were measured by microdialysis. MEASUREMENTS AND MAIN RESULTS: In control animals, superior mesenteric arterial blood flow, mucosal microcirculatory blood flow, intramucosal Pco2, and the lactate/pyruvate ratio remained unchanged. In both groups, mucosal blood flow was better preserved than muscularis blood flow. During stepwise mesenteric blood flow reduction, heterogeneous microcirculatory blood flow remained a prominent feature (coefficient of variation, approximately 45%). A 30% flow reduction from baseline was associated with a decrease in microdialysis glucose concentration from 2.37 (2.10-2.70) mmol/L to 0.57 (0.22-1.60) mmol/L (p < .05). After 75% flow reduction, the microdialysis lactate/pyruvate ratio increased from 8.6 (8.0-14.1) to 27.6 (15.5-37.4, p < .05), and arterial-intramucosal Pco2 gradients increased from 1.3 (0.4-3.5) kPa to 10.8 (8.0-16.0) kPa (p < .05). CONCLUSIONS: Blood flow redistribution and heterogeneous microcirculatory perfusion can explain apparently maintained regional oxidative metabolism during mesenteric hypoperfusion, despite local signs of anaerobic metabolism. Early decreasing glucose concentrations suggest that substrate supply may become crucial before oxygen consumption decreases.
Resumo:
PURPOSE To determine the best-performing combination of three core buildup materials and three bonding materials based on their bond strength to ceramic blocks in vitro. MATERIALS AND METHODS The materials used for core buildup were a composite (Tetric EvoCeram), a compomer (Compoglass F), and a glass-ionomer cement (Ketac Fil Plus), and for bonding, a three-step etch-and-rinse adhesive (Syntac), a two-step etch-and-rinse adhesive (ExciTE), and a single-step system (RelyX Unicem). Bond strength to ceramic blocks was determined by shear bond strength testing. Fracture behavior was evaluated by scanning electron microscopy. RESULTS The highest adhesive values between buildup and ceramic were obtained using the materials Compoglass F and Syntac, followed by Compoglass F and ExciTE. Among the two other core buildups, Tetric EvoCeram performed better than Ketac Fil Plus, which was independent of the bonding materials. Adhesive fractures were characteristically observed with Syntac and ExciTE, and cohesive fractures were characteristically observed with RelyX Unicem. CONCLUSION These data show that compomers bonded with a multistep adhesive system achieved statistically significantly higher shear bond strength than composites and glass-ionomer cements. Within the limitations inherent to this in vitro study, the use of compomers for core buildup can be recommended.
Resumo:
Derivation of probability estimates complementary to geophysical data sets has gained special attention over the last years. Information about a confidence level of provided physical quantities is required to construct an error budget of higher-level products and to correctly interpret final results of a particular analysis. Regarding the generation of products based on satellite data a common input consists of a cloud mask which allows discrimination between surface and cloud signals. Further the surface information is divided between snow and snow-free components. At any step of this discrimination process a misclassification in a cloud/snow mask propagates to higher-level products and may alter their usability. Within this scope a novel probabilistic cloud mask (PCM) algorithm suited for the 1 km × 1 km Advanced Very High Resolution Radiometer (AVHRR) data is proposed which provides three types of probability estimates between: cloudy/clear-sky, cloudy/snow and clear-sky/snow conditions. As opposed to the majority of available techniques which are usually based on the decision-tree approach in the PCM algorithm all spectral, angular and ancillary information is used in a single step to retrieve probability estimates from the precomputed look-up tables (LUTs). Moreover, the issue of derivation of a single threshold value for a spectral test was overcome by the concept of multidimensional information space which is divided into small bins by an extensive set of intervals. The discrimination between snow and ice clouds and detection of broken, thin clouds was enhanced by means of the invariant coordinate system (ICS) transformation. The study area covers a wide range of environmental conditions spanning from Iceland through central Europe to northern parts of Africa which exhibit diverse difficulties for cloud/snow masking algorithms. The retrieved PCM cloud classification was compared to the Polar Platform System (PPS) version 2012 and Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 cloud masks, SYNOP (surface synoptic observations) weather reports, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask version 3 and to MODIS collection 5 snow mask. The outcomes of conducted analyses proved fine detection skills of the PCM method with results comparable to or better than the reference PPS algorithm.
Resumo:
Resistance in Neisseria gonorrhoeae to all available therapeutic antimicrobials has emerged and new efficacious drugs for treatment of gonorrhea are essential. The topoisomerase II inhibitor ETX0914 (also known as AZD0914) is a new spiropyrimidinetrione antimicrobial that has different mechanisms of action from all previous and current gonorrhea treatment options. In this study, the N. gonorrhoeae resistance determinants for ETX0914 were further described and the effects of ETX0914 on the growth of N. gonorrhoeae (ETX0914 wild type, single step selected resistant mutants, and efflux pump mutants) were examined in a novel in vitro time-kill curve analysis to estimate pharmacodynamic parameters of the new antimicrobial. For comparison, ciprofloxacin, azithromycin, ceftriaxone, and tetracycline were also examined (separately and in combination with ETX0914). ETX0914 was rapidly bactericidal for all wild type strains and had similar pharmacodynamic properties to ciprofloxacin. All selected resistant mutants contained mutations in amino acid codons D429 or K450 of GyrB and inactivation of the MtrCDE efflux pump fully restored the susceptibility to ETX0914. ETX0914 alone and in combination with azithromycin and ceftriaxone was highly effective against N. gonorrhoeae and synergistic interaction with ciprofloxacin, particularly for ETX0914-resistant mutants, was found. ETX0914, monotherapy or in combination with azithromycin (to cover additional sexually transmitted infections), should be considered for phase III clinical trials and future gonorrhea treatment.
Resumo:
PURPOSE Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. MATERIALS AND METHODS Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. RESULTS Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. CONCLUSION Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.
Resumo:
AIMS The aim of this single-site, randomized, controlled, double-blind, 3-arm parallel study was to determine the effectiveness of a prophylaxis paste containing 15% calcium sodium phosphosilicate (CSPS; NovaMin(®) ) with and without fluoride in reducing dentine hypersensitivity immediately after a single application and 28 days following dental scaling and root planing. MATERIALS & METHODS Overall, 151 subjects were enrolled in this study. All subjects received a scaling and root planing procedure followed by a final prophylaxis step using one of three different prophylaxis pastes: Test-A (15% NovaMin(®) and NaF), Test-B (15% NovaMin(®) ) and a control. Dentine hypersensitivity was assessed by tactile stimulus (Yeaple Probe(®) ) and by air blast (Schiff scale) at baseline, immediately after and 28 days after a prophylaxis procedure. One hundred and forty-nine subjects completed the study. RESULTS Subjects having received the test prophylaxis pastes showed statistically lower (anova, p < 0.05) dentine hypersensitivity compared with the control group immediately after the prophylaxis procedure (Yeaple Probe(®) : Test-A = 20.9 ± 12.6, Test-B = 22.7 ± 12.9, Control=11.2 ± 3.1; Schiff score: Test-A = 1.1 ± 0.6, Test-B = 1.1 ± 0.6, Control = 2.0 ± 0.7) and after 28 days (Yeaple probe: Test-A = 21.5 ± 11.9, Test-B = 20.6 ± 11.3, Control = 11.8 ± 6.0; Schiff score: Test-A = 1.0 ± 0.6, Test-B = 1.0 ± 0.6, Control = 2.0 ± 0.7). CONCLUSIONS In conclusion, the single application of both fluoridated and non-fluoridated prophylaxis pastes containing 15% CSPS (NovaMin(®) ) provided a significant reduction of dentine hypersensitivity up to at least 28 days.
Resumo:
The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.
Resumo:
BACKGROUND Air enema under fluoroscopy is a well-accepted procedure for the treatment of childhood intussusception. However, the reported radiation doses of pneumatic reduction with conventional fluoroscopy units have been high in decades past. OBJECTIVE To compare current radiation doses at our institution to past doses reported by others for fluoroscopic-guided pneumatic reduction of ileo-colic intussusception in children. MATERIALS AND METHODS Since 2007 radiologists and residents in our department who perform reduction of intussusceptions have received a radiation risk training. We retrospectively analyzed the data of 45 children (5 months-8 years) who underwent a total of 48 pneumatic reductions of ileo-colic intussusception between 2008 and 2012. We analyzed data for screening time and dose area product (DAP) and compared these data to those reported up to and including the year 2000. RESULTS Our mean screening time measured by the DAP-meter was 53.8 s (range 1-320 s, median 33.0 s). The mean DAP was 11.4 cGy ∙ cm(2) (range 1-145 cGy ∙ cm(2), median 5.45 cGy ∙ cm(2)). There was one bowel perforation, in a 1-year-old boy requiring surgical revision. Only three studies in the literature presented radiation exposure results on children who received pneumatic or hydrostatic reduction of intussusception under fluoroscopy. Screening times and dose area products in those studies, which were published in the 1990 s and in the year 2000, were substantially higher than those in our sample. CONCLUSION Low-frequency pulsed fluoroscopy and other dose-saving keys as well as the radiation risk training might have helped to improve the quality of the procedure in terms of radiation exposure.