14 resultados para Cash Investments Are Required For Restaurant Purchases

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5 restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5 splice variant TRIM5 in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serine residues of the human insulin receptor (HIR) may be phosphorylated and negatively regulate the insulin signal. We studied the impact of 16 serine residues in HIR by mutation to alanine and co-overexpression in human embryonic kidney (HEK) 293 cells together with the docking proteins insulin receptor substrate (IRS)-1, IRS-2, or (SHC) Src homologous and collagen-like. As a control, IRS-1 was also cotransfected with an HIR with a juxtamembrane deletion (HIR delta JM) and therefore not containing the domain required for interaction with IRS-1. Coexpression of HIR with IRS-1, IRS-2, and SHC strongly enhanced tyrosine phosphorylation of these proteins. A similar increase in tyrosine phosphorylation was observed in cells overexpressing IRS-1, IRS-2, or SHC together with all HIR mutants except HIR delta JM and a mutant carrying exchanges of serines 1177, 1178, and 1182 to alanine (HIR1177/78/82), although this mutant showed normal autophosphorylation. Analysis of total cell lysates with anti-phosphotyrosine antibodies showed that in addition to the overexpressed substrates, other cellular proteins displayed reduced levels of tyrosine phosphorylation in these cells. To study consequences for phosphatidylinositol 3-kinase (PI 3-kinase) activation, we established stable NIH3T3 fibroblast cell lines overexpressing wild-type HIR, HIR1177/78/82, and other HIR mutants as the control. Again, HIR1177/78/82 showed normal autophosphorylation but showed a clear decrease in tyrosine phosphorylation of endogenous IRS-1 and activation of PI 3-kinase. This decrease in kinase activity also occurred in an in vitro kinase assay towards recombinant IRS-1. Finally, we performed a separation of the phosphopeptides by high-performance liquid chromatography and could not detect any differences in the profiles of HIR and HIR1177/78/82. In conclusion, we have defined a region in HIR that is important for substrate phosphorylation but not autophosphorylation. Therefore, this mutant may provide new insights into the mechanism of kinase activation and substrate phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionarily conserved Mre11/Rad50/Nbs1 (MRN) complex is involved in various aspects of meiosis. Whereas available evidence suggests that the Mre11 nuclease activity might be responsible for Spo11 removal in Saccharomyces cerevisiae, this has not been confirmed experimentally. This study demonstrates for the first time that Mre11 (Schizosaccharomyces pombe Rad32(Mre11)) nuclease activity is required for the removal of Rec12(Spo11). Furthermore, we show that the CtIP homologue Ctp1 is required for Rec12(Spo11) removal, confirming functional conservation between Ctp1(CtIP) and the more distantly related Sae2 protein from Saccharomyces cerevisiae. Finally, we show that the MRN complex is required for meiotic recombination, chromatin remodeling at the ade6-M26 recombination hot spot, and formation of linear elements (which are the equivalent of the synaptonemal complex found in other eukaryotes) but that all of these functions are proficient in a rad50S mutant, which is deficient for Rec12(Spo11) removal. These observations suggest that the conserved role of the MRN complex in these meiotic functions is independent of Rec12(Spo11) removal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5' ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Delta and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The host's innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current therapies to treat inflammatory bowel diseases have limited efficacy, significant side effects, and often wane over time. Little is known about the cellular and molecular mechanisms operative in the process of mucosal healing from colitis. To study such events, we developed a new model of reversible colitis in which adoptive transfer of CD4(+)CD45RB(hi) T cells into Helicobacter typhlonius-colonized lymphopenic mice resulted in a rapid onset of colonic inflammation that was reversible through depletion of colitogenic T cells. Remission was associated with an improved clinical and histopathological score, reduced immune cell infiltration to the intestinal mucosa, altered intestinal gene expression profiles, regeneration of the colonic mucus layer, and the restoration of epithelial barrier integrity. Notably, colitogenic T cells were not only critical for induction of colitis but also for maintenance of disease. Depletion of colitogenic T cells resulted in a rapid drop in tumor necrosis factor α (TNFα) levels associated with reduced infiltration of inflammatory immune cells to sites of inflammation. Although neutralization of TNFα prevented the onset of colitis, anti-TNFα treatment of mice with established disease failed to resolve colonic inflammation. Collectively, this new model of reversible colitis provides an important research tool to study the dynamics of mucosal healing in chronic intestinal remitting-relapsing disorders.Mucosal Immunology advance online publication 16 September 2015; doi:10.1038/mi.2015.93.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell competition is a mechanism that eliminates slow dividing cells from a growing population. It is believed that the genes wasp, psr, and draper are active in the cells that win the competition ("winner cells") and that they are essential in the winner cells for the induction of apoptosis and for the elimination of the "loser cells." Here, we show that lack of those genes in winner cells appears to be dispensable for cell-competition-induced apoptosis and during dmyc-induced supercompetition. Moreover, winner clones do not need those genes in order to preserve their growth advantage. Finally, we find that most of the clearance of the apoptotic debris is not performed by winners but by recruited hemocytes, which are required for the removal of the apoptotic corpses at the very end. Therefore, engulfment is a consequence-not a cause-of loser cells' death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of embryonic blood vascular morphogenesis. However, the molecular mechanisms required for ephrinB2 transduced cellular signaling in vivo have not been characterized. To address this question, we generated two sets of knock-in mice: ephrinB2DeltaV mice expressed ephrinB2 lacking the C-terminal PDZ interaction site, and ephrinB2(5F) mice expressed ephrinB2 in which the five conserved tyrosine residues were replaced by phenylalanine to disrupt phosphotyrosine-dependent signaling events. Our analysis revealed that the homozygous mutant mice survived the requirement of ephrinB2 in embryonic blood vascular remodeling. However, ephrinB2DeltaV/DeltaV mice exhibited major lymphatic defects, including a failure to remodel their primary lymphatic capillary plexus into a hierarchical vessel network, hyperplasia, and lack of luminal valve formation. Unexpectedly, ephrinB2(5F/5F) mice displayed only a mild lymphatic phenotype. Our studies define ephrinB2 as an essential regulator of lymphatic development and indicate that interactions with PDZ domain effectors are required to mediate its functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses possible contributions of land change science to the growing body of knowledge about large-scale land acquisition. Despite obvious commonalities, such as a problem-oriented and interdisciplinary approach to land change, there seems to be little overlap between the two fields thus far. We adopt a sustainability research perspective — an important feature of land change science — to review research questions about large-scale land acquisition that are currently being addressed, and to define questions for further inquiry. Possible contributions of land change science toward more sustainable land investments are based on understanding land use change not only as a consequence, but also as a cause of large-scale land acquisition and as a solution to the problems land acquisition can create.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a lively debate on whether biodiversity conservation and agricultural production could be better reconciled by land sparing (strictly separating production fields and conservation areas) or by land sharing (combining both, agricultural production and biodiversity conservation on the same land). The debate originates from tropical countries, where agricultural land use continues to increase at the expense of natural ecosystems. But is it also relevant for Europe, where agriculture is withdrawing from marginal regions whilst farming of fertile lands continues to be intensified? Based on recent research on farmland biodiversity we conclude that the land sharing – land sparing dichotomy is too simplistic for Europe. Instead we differentiate between productive and marginal farmland. On productive farmland, semi-natural habitats are required to yield ecosystem services relevant for agriculture, to promote endangered farmland species which society wants to conserve even in intensively farmed regions, and to allow migration of non-farmland species through the agricultural matrix. On marginal farmland, high-nature value farming is a traditional way of land sharing, yielding high quality agricultural products and conserving specialized species. To conserve highly disturbance-sensitive species, there is a need for nature reserves. In conclusion, land sparing is not a viable olution for Europe in both productive and marginal farmland but because of different reasons in each type of farmland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As in all metazoans, the replication-dependent histone genes of Caenorhabditis elegans lack introns and contain a short hairpin structure in the 3' untranslated region. This hairpin structure is a key element for post-transcriptional regulation of histone gene expression and determines mRNA 3' end formation, nuclear export, translation and mRNA decay. All these steps contribute to the S-phase-specific expression of the replication-dependent histone genes. The hairpin structure is the binding site for histone hairpin-binding protein that is required for hairpin-dependent regulation. Here, we demonstrate that the C. elegans histone hairpin-binding protein gene is transcribed in dividing cells during embryogenesis and postembryonic development. Depletion of histone hairpin-binding protein (HBP) function in early embryos using RNA-mediated interference leads to an embryonic-lethal phenotype brought about by defects in chromosome condensation. A similar phenotype was obtained by depleting histones H3 and H4 in early embryos, indicating that the defects in hairpin-binding protein-depleted embryos are caused by reduced histone biosynthesis. We have confirmed this by showing that HBP depletion reduces histone gene expression. Depletion of HBP during postembryonic development also results in defects in cell division during late larval development. In addition, we have observed defects in the specification of vulval cell fate in animals depleted for histone H3 and H4, which indicates that histone proteins are required for cell fate regulation during vulval development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein screening/detection is an essential tool in many laboratories. Owing to the relatively large time investments that are required by standard protocols, the development of methods with higher throughput while maintaining an at least comparable signal-to-noise ratio is highly beneficial in many research areas. This chapter describes how cold microwave technology can be used to enhance the rate of molecular interactions and provides protocols for dot blots, Western blots, and ELISA procedures permitting a completion of all incubation steps (blocking and antibody steps) within 24-45 min.