4 resultados para Carbon density
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Reducing Emissions from Deforestation and forest Degradation and enhancing forest carbon stocks in developing countries (REDD+) is heavily promoted in Laos. REDD+ is often perceived as an opportunity to jointly address climate change and poverty and, therefore, could come timely for Laos to combine its prominent national target of poverty eradication with global climate mitigation efforts. Countrywide planning of the right approaches to REDD+ combined with poverty alleviation requires knowledge of the spatial combination of poverty and carbon stocks at the national level. This study combined spatial information on carbon stored in vegetation and on poverty and created carbon-poverty typologies for the whole country at the village level. We found that 11% of the villages of Laos have high to very high average village-level carbon stock densities and a predominantly poor population. These villages cover 20% of the territory and are characterized by low population density. Shifting cultivation areas in the northwestern parts of the country have a higher carbon mitigation potential than areas in the central and eastern highlands due to a more favorable climate. Finally, we found that in Laos the majority (58%) of poor people live in areas with low carbon stock densities without major potential to store carbon. Accordingly, REDD+ cannot be considered a core instrument for poverty alleviation. The carbon-poverty typologies presented here provide answers to basic questions related to planning and managing of REDD+. They could serve as a starting point for the design of systems to monitor both socioeconomic and environmental development at the national level.
Resumo:
One goal of interbody fusion is to increase the height of the degenerated disc space. Interbody cages in particular have been promoted with the claim that they can maintain the disc space better than other methods. There are many factors that can affect the disc height maintenance, including graft or cage design, the quality of the surrounding bone and the presence of supplementary posterior fixation. The present study is an in vitro biomechanical investigation of the compressive behaviour of three different interbody cage designs in a human cadaveric model. The effect of bone density and posterior instrumentation were assessed. Thirty-six lumbar functional spinal units were instrumented with one of three interbody cages: (1) a porous titanium implant with endplate fit (Stratec), (2) a porous, rectangular carbon-fibre implant (Brantigan) and (3) a porous, cylindrical threaded implant (Ray). Posterior instrumentation (USS) was applied to half of the specimens. All specimens were subjected to axial compression displacement until failure. Correlations between both the failure load and the load at 3 mm displacement with the bone density measurements were observed. Neither the cage design nor the presence of posterior instrumentation had a significant effect on the failure load. The loads at 3 mm were slightly less for the Stratec cage, implying lower axial stiffness, but were not different with posterior instrumentation. The large range of observed failure loads overlaps the potential in vivo compressive loads, implying that failure of the bone-implant interface may occur clinically. Preoperative measurements of bone density may be an effective tool to predict settling around interbody cages.
Resumo:
In a first step to obtain a proxy record of past climatic events (including the El Ni (n) over tildeo-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea Superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the `juvenile effect', resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the `anthropogenic effect' caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings.
Resumo:
Substantial effort has recently been put into the development of climate reconstructions from tree-ring stable carbon isotopes, though the interpretation of long-term trends retained in such timeseries remains challenging. Here we use detrended δ13C measurements in Pinus uncinata tree-rings, from the Spanish Pyrenees, to reconstruct decadal variations in summer temperature back to the 13th century. The June-August temperature signal of this reconstruction is attributed using decadally as well as annually resolved, 20th century δ13C data. Results indicate that late 20th century warming has not been unique within the context of the past 750 years. Our reconstruction contains greater am-plitude than previous reconstructions derived from traditional tree-ring density data, and describes particularly cool conditions during the late 19th century. Some of these differences, including early warm periods in the 14th and 17th centuries, have been retained via δ13C timeseries detrending - a novel approach in tree-ring stable isotope chronology development. The overall reduced variance in earlier studies points to an underestimation of pre-instrumental summer temperature variability de-rived from traditional tree-ring parameters.