7 resultados para Cône de croissance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Objective Malnutrition is common in HIV-infected children in Africa and an indication for antiretroviral treatment (ART). We examined anthropometric status and response to ART in children treated at a large public-sector clinic in Malawi. Methods All children aged <15 years who started ART between January 2001 and December 2006 were included and followed until March 2008. Weight and height were measured at regular intervals from 1 year before to 2 years after the start of ART. Sex- and age-standardized z-scores were calculated for weight-for-age (WAZ) and height-for-age (HAZ). Predictors of growth were identified in multivariable mixed-effect models. Results A total of 497 children started ART and were followed for 972 person-years. Median age (interquartile range; IQR) was 8 years (4–11 years). Most children were underweight (52% of children), stunted (69%), in advanced clinical stages (94% in WHO stages 3 or 4) and had severe immunodeficiency (77%). After starting ART, median (IQR) WAZ and HAZ increased from −2.1 (−2.7 to −1.3) and −2.6 (−3.6 to −1.8) to −1.4 (−2.1 to −0.8) and −1.8 (−2.4 to −1.1) at 24 months, respectively (P < 0.001). In multivariable models, baseline WAZ and HAZ scores were the most important determinants of growth trajectories on ART. Conclusions Despite a sustained growth response to ART among children remaining on therapy, normal values were not reached. Interventions leading to earlier HIV diagnosis and initiation of treatment could improve growth response.
Resumo:
Despite recent progress in fluorescence microscopy techniques, electron microscopy (EM) is still superior in the simultaneous analysis of all tissue components at high resolution. However, it is unclear to what extent conventional fixation for EM using aldehydes results in tissue alteration. Here we made an attempt to minimize tissue alteration by using rapid high-pressure freezing (HPF) of hippocampal slice cultures. We used this approach to monitor fine-structural changes at hippocampal mossy fiber synapses associated with chemically induced long-term potentiation (LTP). Synaptic plasticity in LTP has been known to involve structural changes at synapses including reorganization of the actin cytoskeleton and de novo formation of spines. While LTP-induced formation and growth of postsynaptic spines have been reported, little is known about associated structural changes in presynaptic boutons. Mossy fiber synapses are assumed to exhibit presynaptic LTP expression and are easily identified by EM. In slice cultures from wildtype mice, we found that chemical LTP increased the length of the presynaptic membrane of mossy fiber boutons, associated with a de novo formation of small spines and an increase in the number of active zones. Of note, these changes were not observed in slice cultures from Munc13-1 knockout mutants exhibiting defective vesicle priming. These findings show that activation of hippocampal mossy fibers induces pre- and postsynaptic structural changes at mossy fiber synapses that can be monitored by EM.
Resumo:
En dépit de sa croissance économique, le Burkina Faso reste l’un des pays les plus pauvres du monde. Dans les villes, entre 20 et 30% des moins de 30 ans sont sans travail véritablement rémunéré. Beaucoup d’entre eux vivent en situation de contrat entre les générations à l’envers, logés et nourris par leurs parents. Ce climat de précarité constante et d’incertitude quotidienne conduit à des formes spécifiques de fantaisies et d’actions. Les entretiens avec de jeunes hommes et femmes de Bobo-Dioulasso que nous avons menés à plusieurs reprises sur trois ans (étude longitudinale) mettent en lumière les conditions qui facilitent l’action en situation d’incertitude quotidienne.
Resumo:
The present topical review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human non-verbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be both voluntarily or emotionally controlled. Recent studies in non-human primates and humans revealed that the motor control of facial expressions has a distributed neural representation. At least 5 cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and, finally, the rostral and caudal cingulate cortex. The results of studies in humans and non-human primates suggest that the innervation of the face is bilaterally controlled for the upper part, and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, since they receive input from different structures of the limbic system. This article is protected by copyright. All rights reserved.