11 resultados para Bulge
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Major efforts have been undertaken to reduce donor-site morbidity after abdominal flaps, which eventually culminated in the introduction of the deep inferior epigastric perforator (DIEP) flap. However, due to anatomical variations (absence of dominant perforators) and the risk of ischaemic complications, the selection of patients qualifying for a DIEP flap is limited. Furthermore, DIEP flaps can only be used as free flaps. We present our long-term experience with a dissection technique of rectus abdominis myocutaneous (RAM) flaps that was developed to circumvent these drawbacks. The dissection is characterised by preventing to sacrifice any perforators nourishing the flap and by fully preserving the anterior rectus sheath, but not the muscle. The study comprises a consecutive series of prospectively assessed patients, treated between February 2000 and April 2008. A total of 100 fascia-sparing RAM flaps were operated on 97 patients (age 22-84 years, median 64 years). Free flaps were mainly used for breast reconstruction (47 flaps/24 patients), and cranially (34) or caudally (19) pedicled flaps for soft-tissue coverage after sternectomy, urogenital tumour resection or rectum amputation. Eighty patients had a total of 213 risk factors, such as cardiovascular diseases, obesity, hyperlipidaemia, diabetes mellitus, smoking or steroid medication. Partial tissue loss (skin or fat necrosis) occurred in 13 flaps, out of which seven required surgical revision. The ischaemic complications were evenly distributed between the patient subsets. At a follow-up of 2-89 months (median 20 months), one patient showed a flap harvest-related abdominal bulge after bilateral-free transverse rectus abdominis myocutaneous (TRAM) flap. We conclude that the present dissection technique provides maximal perforator-related perfusion and minimal donor-site morbidity even in pedicled flaps and high-risk patients. In free flaps, it may, therefore, be recommended as an alternative to the DIEP flap.
Resumo:
INTRODUCTION: Urogenital prolapse is a very common condition in women with a prevalence of 30%. If conservative therapy fails or is not desired by the patient, prolapse repair is usually performed under general or regional anaesthetic. The aim of the study was to evaluate feasibility, efficacy and functional outcome after fascial prolapse repairs under local anaesthetic (LA). PATIENTS AND METHODS: Between November 1999 and December 2000, 130 consecutive patients presenting with anterior or posterior prolapse or both were invited to have their procedure performed under LA. All patients with a symptomatic minimum stage II prolapse were included. Prior to surgery all women completed a standardized questionnaire examining the specific and non-specific symptoms of prolapse and their situation was classified using the ICS Pelvic Organ Prolapse (POP-Q) system. Follow up was 30 months. Objective success was defined as a stage 1 or less and no symptoms of bulge, subjective success was defined as lack of specific or non-specific symptoms of prolapse. RESULTS: There were 128 patients who agreed to have their operations performed under LA: 68 in the anterior group, 52 in the posterior group and 8 with a combined anterior and posterior repair. Objective cure rate was 88% for posterior repair, 87% for anterior repair and 63% for combined repair. Success rates were no different in primary from recurrent cases. There were no intraoperative complications and operating time was 21 min (anterior repair) or 23 min (posterior repair). There was no de novo postoperative urinary or stool incontinence and all patients but two would have the operation performed again under the same circumstances. The two remaining refused due to embarrassment but for no other reason. CONCLUSION: Local anaesthetic prolapse repair is feasible and effective in middle term results. It is well accepted by the patients who benefit from less side effects and short hospital stay.
Resumo:
OBJECTIVE: To evaluate quality of life and pelvic organ and sexual function before and during pessary use in patients with symptomatic pelvic organ prolapse and to determine reasons which lead to cessation of pessary use. DESIGN: Prospective observational study. SETTING: Tertiary referral center. PATIENT(S): Patients with symptomatic stage II or more prolapse of the anterior, posterior, or apical vaginal wall with or without uterus were included in this study. INTERVENTION(S): We used the Female Sexual Function Index questionnaire and the Sheffield prolapse questionnaire. For quality of life we used the King's Health Questionnaire. MAIN OUTCOME MEASURE(S): Main outcome measures were quality of life and sexual and pelvic organ function. RESULT(S): A total of 73 women participated in this study; 31 were sexually active. Desire, lubrication, and sexual satisfaction showed statistically significant improvement, and orgasm remained unchanged. Statistically significant improvement in the feeling of bulge occurred during therapy, stool outlet problems were significantly improved, overactive bladder symptoms were significantly better, and pessaries did not significantly alter incontinence. CONCLUSION(S): Pessaries have been shown to be a viable noninvasive treatment for pelvic organ prolapse improving organ and sexual function as well as general wellbeing.
Resumo:
The whisker follicle has CD34-positive stem cells that migrate from their niche near the bulge along the glassy membrane to the whisker bulb, where they participate in the formation of the whisker shaft. Using immunohistochemistry we found the glycoprotein tenascin-C in the fibrous capsule of mouse whisker follicles, along the glassy membrane and in the trabecular region surrounding keratin-15-negative, CD34-positive stem cells. The related glycoprotein tenascin-W is found in the CD34-positive stem cell niche, in nearby trabeculae, and along the glassy membrane. Tenascin-W is also found in the neural stem cell niche of nearby hair follicles. The formation of stress fibers and focal adhesion complexes in CD34-positive whisker-derived stem cells cultured on fibronectin was inhibited by both tenascin-C and tenascin-W, which is consistent with a role for these glycoproteins in promoting the migration of these cells from the niche to the whisker bulb. Tenascin-C, but not tenascin-W, increased the proliferation of whisker follicle stem cells in vitro. Thus, the CD34-positive whisker follicle stem cell niche contains both tenascin-C and tenascin-W, and these glycoproteins may play a role in directing the migration and proliferation of these stem cells.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells.
Resumo:
BACKGROUND Follicular stem cells and their progeny are responsible for the cyclical renewal of hair follicles and maintenance of the hair coat. The understanding of pathways involved in this process is essential to elucidate the pathogenetic mechanisms of primary alopecia. Stem cells and their direct descendants are located in the bulge region of the isthmus of hair follicles. Although these cells have been studied extensively in mice and humans, data for canine isthmic keratinocyte activation and proliferation are not available. HYPOTHESIS/OBJECTIVES The aim was to establish an accurate and reliable in vitro system to study the growth potential of canine isthmic keratinocytes. We assessed the colony-promoting capability of a commercially available canine-specific medium, CELLnTEC (CnT-09), compared with a well-established home-made medium, complete FAD (cFAD). The CnT-09 medium is specific for the growth of canine keratinocytes, while the cFAD medium can support growth and colony formation of keratinocytes from several species. ANIMALS Skin biopsies were obtained from 15 recently euthanized dogs of various breeds with no skin abnormalities. METHODS The isthmic region of compound hair follicles was isolated by microdissection and cell growth monitored using several parameters with colony-forming assays. RESULTS The CnT-09 and cFAD media provided similar growth as measured by the total number and size of colonies, as well as rate of cell differentiation. CONCLUSIONS The commercial canine-specific CnT-09 medium was comparable to the home-made cFAD medium in supporting the growth and proliferation of canine follicular keratinocytes in vitro. The CnT-09 medium should be a viable alternative growth medium for molecular studies of alopecic disorders in dogs.
Resumo:
The role of the DNA phosphodiester backbone in the transfer of melting cooperativity between two helical domains was experimentally addressed with a helix-bulge-helix DNA model, in which the bulge consisted of a varying number of either conformationally flexible propanediol or conformationally constrained bicyclic anucleosidic phosphodiester backbone units. We found that structural communication between two double helical domains is transferred along the DNA backbone over the equivalent of ca. 12-20 backbone units, depending on whether there is a symmetric or asymmetric distribution of the anucleosidic units on both strands. We observed that extension of anucleosidic units on one strand only suffices to disrupt cooperativity transfer in a similar way as if extension occurs on both strands, indicating that the length of the longest anucleosidic inset determines cooperativity transfer. Furthermore, conformational rigidity of the sugar unit increases the distance of coopertivity transfer along the phosphodiester backbone. This is especially the case when the units are asymmetrically distributed in both strands
Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog
Resumo:
Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.
Resumo:
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical–basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical–basal position or the identity of the induced structures.