11 resultados para Botero, Yolanda
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.
Resumo:
The intestinal microbiota regulates key host functions. It is unknown whether modulation of the microbiota can affect a genetically determined host phenotype. Polymorphisms in the Nucleotide oligomerization domain (Nod)-like receptor family confer genetic risk for inflammatory bowel disease (IBD). We investigated whether the intestinal microbiota and the probiotic strain Bifidobacterium breve NCC2950 affect intestinal barrier function and responses to intestinal injury in Nod1(-/-); Nod2(-/-) mice.
Resumo:
BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.
Resumo:
IMPORTANCE International guidelines advocate a 7- to 14-day course of systemic glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease (COPD). However, the optimal dose and duration are unknown. OBJECTIVE To investigate whether a short-term (5 days) systemic glucocorticoid treatment in patients with COPD exacerbation is noninferior to conventional (14 days) treatment in clinical outcome and whether it decreases the exposure to steroids. DESIGN, SETTING, AND PATIENTS REDUCE: (Reduction in the Use of Corticosteroids in Exacerbated COPD), a randomized, noninferiority multicenter trial in 5 Swiss teaching hospitals, enrolling 314 patients presenting to the emergency department with acute COPD exacerbation, past or present smokers (≥20 pack-years) without a history of asthma, from March 2006 through February 2011. INTERVENTIONS Treatment with 40 mg of prednisone daily for either 5 or 14 days in a placebo-controlled, double-blind fashion. The predefined noninferiority criterion was an absolute increase in exacerbations of at most 15%, translating to a critical hazard ratio of 1.515 for a reference event rate of 50%. MAIN OUTCOME AND MEASURE Time to next exacerbation within 180 days. RESULTS Of 314 randomized patients, 289 (92%) of whom were admitted to the hospital, 311 were included in the intention-to-treat analysis and 296 in the per-protocol analysis. Hazard ratios for the short-term vs conventional treatment group were 0.95 (90% CI, 0.70 to 1.29; P = .006 for noninferiority) in the intention-to-treat analysis and 0.93 (90% CI, 0.68 to 1.26; P = .005 for noninferiority) in the per-protocol analysis, meeting our noninferiority criterion. In the short-term group, 56 patients (35.9%) reached the primary end point; 57 (36.8%) in the conventional group. Estimates of reexacerbation rates within 180 days were 37.2% (95% CI, 29.5% to 44.9%) in the short-term; 38.4% (95% CI, 30.6% to 46.3%) in the conventional, with a difference of -1.2% (95% CI, -12.2% to 9.8%) between the short-term and the conventional. Among patients with a reexacerbation, the median time to event was 43.5 days (interquartile range [IQR], 13 to 118) in the short-term and 29 days (IQR, 16 to 85) in the conventional. There was no difference between groups in time to death, the combined end point of exacerbation, death, or both and recovery of lung function. In the conventional group, mean cumulative prednisone dose was significantly higher (793 mg [95% CI, 710 to 876 mg] vs 379 mg [95% CI, 311 to 446 mg], P < .001), but treatment-associated adverse reactions, including hyperglycemia and hypertension, did not occur more frequently. CONCLUSIONS AND RELEVANCE In patients presenting to the emergency department with acute exacerbations of COPD, 5-day treatment with systemic glucocorticoids was noninferior to 14-day treatment with regard to reexacerbation within 6 months of follow-up but significantly reduced glucocorticoid exposure. These findings support the use of a 5-day glucocorticoid treatment in acute exacerbations of COPD. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN19646069.
Resumo:
BACKGROUND: Chemotherapies of solid tumors commonly include 5-fluorouracil (5-FU). With standard doses of 5-FU, substantial inter-patient variability has been observed in exposure levels and treatment response. Recently, improved outcomes in colorectal cancer patients due to pharmacokinetically guided 5-FU dosing were reported. We aimed at establishing a rapid and sensitive method for monitoring 5-FU plasma levels in cancer patients in our routine clinical practice. METHODS: Performance of the Saladax My5-FU™ immunoassay was evaluated on the Roche Cobas® Integra 800 analyzer. Subsequently, 5-FU concentrations of 247 clinical plasma samples obtained with this assay were compared to the results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and other commonly used clinical analyzers (Olympus AU400, Roche Cobas c6000, and Thermo Fisher CDx90). RESULTS: The My-FU assay was successfully validated on the Cobas Integra 800 analyzer in terms of linearity, precision, accuracy, recovery, interference, sample carryover, and dilution integrity. Method comparison between the Cobas Integra 800 and LC-MS/MS revealed a proportional bias of 7% towards higher values measured with the My5-FU assay. However, when the Cobas Integra 800 was compared to three other clinical analyzers in addition to LC-MS/MS including 50 samples representing the typical clinical range of 5-FU plasma concentrations, only a small proportional bias (≤1.6%) and a constant bias below the limit of detection was observed. CONCLUSIONS: The My5-FU assay demonstrated robust and highly comparable performance on different analyzers. Therefore, the assay is suitable for monitoring 5-FU plasma levels in routine clinical practice and may contribute to improved efficacy and safety of commonly used 5-FU-based chemotherapies.
Resumo:
Janus kinases (JAKs) are central signaling molecules in cytokine receptor cascades. Although they have also been implicated in chemokine receptor signaling, this function continues to be debated. To address this issue, we established a nucleofection model in primary, nonactivated mouse T lymphocytes to silence JAK expression and to evaluate the ability of these cells to home to lymph nodes. Reduced JAK1 and JAK2 expression impaired naïve T-cell migration in response to gradients of the chemokines CXCL12 and CCL21. In vivo homing of JAK1/JAK2-deficient cells to lymph nodes decreased, whereas intranodal localization and motility were unaffected. JAK1 and JAK2 defects altered CXCL12- and CCL21-triggered ezrin/radixin/moesin (ERM) dephosphorylation and F-actin polymerization, as well as activation of lymphocyte function-associated Ag-1 and very late Ag-4 integrins. As a result, the cells did not adhere firmly to integrin substrates in response to these chemokines. The results demonstrate that JAK1/JAK2 participate in chemokine-induced integrin activation and might be considered a target for modulation of immune cell extravasation and therefore, control of inflammatory reactions.
Resumo:
Many people routinely criticise themselves. While self-criticism is largely unproblematic for most individuals, depressed patients exhibit excessive self-critical thinking, which leads to strong negative affects. We used functional magnetic resonance imaging in healthy subjects (N = 20) to investigate neural correlates and possible psychological moderators of self-critical processing. Stimuli consisted of individually selected adjectives of personally negative content and were contrasted with neutral and negative non-self-referential adjectives. We found that confrontation with self-critical material yielded neural activity in regions involved in emotions (anterior insula/hippocampus-amygdala formation) and in anterior and posterior cortical midline structures, which are associated with self-referential and autobiographical memory processing. Furthermore, contrasts revealed an extended network of bilateral frontal brain areas. We suggest that the co-activation of superior and inferior lateral frontal brain regions reflects the recruitment of a frontal top-down pathway, representing cognitive reappraisal strategies for dealing with evoked negative affects. In addition, activation of right superior frontal areas was positively associated with neuroticism and negatively associated with cognitive reappraisal. Although these findings may not be specific to negative stimuli, they support a role for clinically relevant personality traits in successful regulation of emotion during confrontation with self-critical material.
Resumo:
Background: Cognitive–behavioural therapy is efficacious in the treatment of major depressive disorder but response rates are still far from satisfactory. Aims: To better understand brain responses to individualised emotional stimuli and their association with outcome, to enhance treatment. Method: Functional magnetic resonance imaging data were collected prior to individual psychotherapy. Differences in brain activity during passive viewing of individualised self-critical material in 23 unmedicated out-patients with depression and 28 healthy controls were assessed. The associations between brain activity, cognitive and emotional change, and outcome were analysed in 21 patients. Results: Patients showed enhanced activity in the amygdala and ventral striatum compared with the control group. Non-response to therapy was associated with enhanced activity in the right amygdala compared with those who responded, and activity in this region was negatively associated with outcome. Emotional but not cognitive changes mediated this association. Conclusions: Amygdala hyperactivity may lessen symptom improvement in psychotherapy for depression through attenuating emotional skill acquisition.
Resumo:
Topical photodynamic therapy (PDT) is a widely approved therapy for actinic keratoses, squamous cell carcinoma in-situ, superficial and certain thin basal cell carcinomas. Recurrence rates are typically equivalent to existing therapies, although inferior to surgery for nodular basal cell carcinoma. PDT can be used both as a lesional or as a field therapy and has the potential to delay/reduce the development of new lesions. PDT has also been studied for its place in the treatment of, as well as its potential to prevent, superficial skin cancers in immune-suppressed patients, although sustained clearance rates are lower than for immunocompetent individuals. Many additional indications have been evaluated, including photo-rejuvenation and inflammatory and infective dermatoses. This S2 guideline considers all current and emerging indications for the use of topical photodynamic therapy in Dermatology, prepared by the PDT subgroup of the European Dermatology Forum guidelines committee. It presents consensual expert recommendations reflecting current published evidence. An unabridged version of this guideline is available online at: http://www.euroderm.org/edf/index.php/edf-guidelines.
Resumo:
OBJECTIVE To analyze prospectively the hypothalamic-pituitary-adrenal (HPA) axis and clinical outcome in patients treated with prednisone for exacerbated chronic obstructive pulmonary disease (COPD). DESIGN Prospective observational study. SUBJECTS AND METHODS Patients presenting to the emergency department were randomized to receive 40 mg prednisone daily for 5 or 14 days in a placebo-controlled manner. The HPA axis was longitudinally assessed with the 1 μg corticotropin test and a clinical hypocortisolism score at baseline, on day 6 before blinded treatment, at hospital discharge, and for up to 180 days of follow-up. Prednisone was stopped abruptly, irrespective of the test results. Patients discharged with pathological test results received instructions about emergency hydrocortisone treatment. RESULTS A total of 311 patients were included in the analysis. Mean basal and stimulated serum total cortisol levels were highest on admission (496±398 and 816±413 nmol/l respectively) and lowest on day 6 (235±174 and 453±178 nmol/l respectively). Pathological stimulation tests were found in 63, 38, 9, 3, and 2% of patients on day 6, at discharge, and on days 30, 90, and 180 respectively, without significant difference between treatment groups. Clinical indicators of hypocortisolism did not correlate with stimulation test results, but cortisol levels were inversely associated with re-exacerbation risk. There were no hospitalizations or deaths as a result of adrenal crisis. CONCLUSION Dynamic changes in the HPA axis occur during and after the treatment of acute exacerbations of COPD. In hypocortisolemic patients who were provided with instructions about stress prophylaxis, the abrupt termination of prednisone appeared safe.