15 resultados para Bispectral Operators
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Hypnotic depth during anesthesia affects electroencephalography waveforms and electroencephalogram-derived indices, such as the bispectral index (BIS). Titrating anesthetic administration against the BIS assumes reliable relationships between BIS values, electroencephalogram waveforms, and effect site concentration, beyond loss of responsiveness. Associations among BIS, end-tidal anesthetic concentrations (ETAC), and patient characteristics were examined during anesthetic maintenance, using B-Unaware trial data.
Resumo:
INTRODUCTION: Sedative and analgesic drugs are frequently used in critically ill patients. Their overuse may prolong mechanical ventilation and length of stay in the intensive care unit. Guidelines recommend use of sedation protocols that include sedation scores and trials of sedation cessation to minimize drug use. We evaluated processed electroencephalography (response and state entropy and bispectral index) as an adjunct to monitoring effects of commonly used sedative and analgesic drugs and intratracheal suctioning. METHODS: Electrodes for monitoring bispectral index and entropy were placed on the foreheads of 44 critically ill patients requiring mechanical ventilation and who previously had no brain dysfunction. Sedation was targeted individually using the Ramsay Sedation Scale, recorded every 2 hours or more frequently. Use of and indications for sedative and analgesic drugs and intratracheal suctioning were recorded manually and using a camera. At the end of the study, processed electroencephalographical and haemodynamic variables collected before and after each drug application and tracheal suctioning were analyzed. Ramsay score was used for comparison with processed electroencephalography when assessed within 15 minutes of an intervention. RESULTS: The indications for boli of sedative drugs exhibited statistically significant, albeit clinically irrelevant, differences in terms of their association with processed electroencephalographical parameters. Electroencephalographical variables decreased significantly after bolus, but a specific pattern in electroencephalographical variables before drug administration was not identified. The same was true for opiate administration. At both 30 minutes and 2 minutes before intratracheal suctioning, there was no difference in electroencephalographical or clinical signs in patients who had or had not received drugs 10 minutes before suctioning. Among patients who received drugs, electroencephalographical parameters returned to baseline more rapidly. In those cases in which Ramsay score was assessed before the event, processed electroencephalography exhibited high variation. CONCLUSIONS: Unpleasant or painful stimuli and sedative and analgesic drugs are associated with significant changes in processed electroencephalographical parameters. However, clinical indications for drug administration were not reflected by these electroencephalographical parameters, and barely by sedation level before drug administration or tracheal suction. This precludes incorporation of entropy and bispectral index as target variables for sedation and analgesia protocols in critically ill patients.
Resumo:
BACKGROUND: Sedation protocols, including the use of sedation scales and regular sedation stops, help to reduce the length of mechanical ventilation and intensive care unit stay. Because clinical assessment of depth of sedation is labor-intensive, performed only intermittently, and interferes with sedation and sleep, processed electrophysiological signals from the brain have gained interest as surrogates. We hypothesized that auditory event-related potentials (ERPs), Bispectral Index (BIS), and Entropy can discriminate among clinically relevant sedation levels. METHODS: We studied 10 patients after elective thoracic or abdominal surgery with general anesthesia. Electroencephalogram, BIS, state entropy (SE), response entropy (RE), and ERPs were recorded immediately after surgery in the intensive care unit at Richmond Agitation-Sedation Scale (RASS) scores of -5 (very deep sedation), -4 (deep sedation), -3 to -1 (moderate sedation), and 0 (awake) during decreasing target-controlled sedation with propofol and remifentanil. Reference measurements for baseline levels were performed before or several days after the operation. RESULTS: At baseline, RASS -5, RASS -4, RASS -3 to -1, and RASS 0, BIS was 94 [4] (median, IQR), 47 [15], 68 [9], 75 [10], and 88 [6]; SE was 87 [3], 46 [10], 60 [22], 74 [21], and 87 [5]; and RE was 97 [4], 48 [9], 71 [25], 81 [18], and 96 [3], respectively (all P < 0.05, Friedman Test). Both BIS and Entropy had high variabilities. When ERP N100 amplitudes were considered alone, ERPs did not differ significantly among sedation levels. Nevertheless, discriminant ERP analysis including two parameters of principal component analysis revealed a prediction probability PK value of 0.89 for differentiating deep sedation, moderate sedation, and awake state. The corresponding PK for RE, SE, and BIS was 0.88, 0.89, and 0.85, respectively. CONCLUSIONS: Neither ERPs nor BIS or Entropy can replace clinical sedation assessment with standard scoring systems. Discrimination among very deep, deep to moderate, and no sedation after general anesthesia can be provided by ERPs and processed electroencephalograms, with similar P(K)s. The high inter- and intraindividual variability of Entropy and BIS precludes defining a target range of values to predict the sedation level in critically ill patients using these parameters. The variability of ERPs is unknown.
Resumo:
We study lepton flavor observables in the Standard Model (SM) extended with all dimension-6 operators which are invariant under the SM gauge group. We calculate the complete one-loop predictions to the radiative lepton decays μ → eγ, τ → μγ and τ → eγ as well as to the closely related anomalous magnetic moments and electric dipole moments of charged leptons, taking into account all dimension-6 operators which can generate lepton flavor violation. Also the 3-body flavor violating charged lepton decays τ ± → μ ± μ + μ −, τ ± → e ± e + e −, τ ± → e ± μ + μ −, τ ± → μ ± e + e −, τ ± → e ∓ μ ± μ ±, τ ± → μ ∓ e ± e ± and μ ± → e ± e + e − and the Z 0 decays Z 0 → ℓ+iℓ−j are considered, taking into account all tree-level contributions.
Resumo:
We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.
Resumo:
We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.
Resumo:
We analyze perturbations of the harmonic oscillator type operators in a Hilbert space H, i.e. of the self-adjoint operator with simple positive eigenvalues μ k satisfying μ k+1 − μ k ≥ Δ > 0. Perturbations are considered in the sense of quadratic forms. Under a local subordination assumption, the eigenvalues of the perturbed operator become eventually simple and the root system contains a Riesz basis.
Resumo:
Cultural entrepreneurship and symbolic management perspectives portray entrepreneurs as skilled cultural operators and often assume them to be capable from the outset to purposefully use ‘cultural resources' in order to motivate resource-holding audiences to support their new ventures. We problematize this premise and develop a model of how entrepreneurs become skilful cultural operators and develop the cultural competences necessary for creating and growing their ventures. The model is grounded in a case study of an entrepreneur who set up shop and sought to acquire resources in a culturally unfamiliar setting. Our model proposes that two adaptive sensemaking processes - approval-driven sensemaking and autonomy-driven sensemaking - jointly facilitate the gradual development of cultural competences. These processes jointly enable entrepreneurs to gain cultural awareness and calibrate their symbolic enactments. Specifically, while approval-driven sensemaking facilitates recognizing cultural resources to symbolically couple a venture's identity claims more tightly with the cultural frames of targeted audiences and gain legitimate distinctiveness, autonomy-driven sensemaking enables recognizing cultural constraints and more effective symbolic decoupling to shield the venture from constraining cultural frames and defend the venture's autonomy and resources. We conclude the paper with a discussion of the theoretical implications of our study for cultural entrepreneurship and symbolic management research.