11 resultados para Biotechnology and applied microbiology
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A survey of starter and probiotic cultures was carried out to determine the current antibiotic resistance situation in microbial food additives in Switzerland. Two hundred isolates from 90 different sources were typed by molecular and other methods to belong to the genera Lactobacillus (74 samples), Staphylococcus (33 samples), Bifidobacterium (6 samples), Pediococcus (5 samples), or were categorized as lactococci or streptococci (82 samples). They were screened for phenotypic resistances to 20 antibiotics by the disk diffusion method. Twenty-seven isolates exhibiting resistances that are not an intrinsic feature of the respective genera were further analyzed by microarray hybridization as a tool to trace back phenotypic resistances to specific genetic determinants. Their presence was finally verified by PCR amplification or Southern hybridization. These studies resulted in the detection of the tetracycline resistance gene tet(K) in 5 Staphylococcus isolates used as meat starter cultures, the tetracycline resistance gene tet(W) in the probiotic cultures Bifidobacterium lactis DSM 10140 and Lactobacillus reuteri SD 2112 (residing on a plasmid), and the lincosamide resistance gene lnu(A) (formerly linA) in L. reuteri SD 2112.
Resumo:
While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys.
Resumo:
Five Mycoplasma strains from wild Caprinae were analyzed: four from Alpine ibex (Capra ibex) which died at the Berlin Zoo between 1993 and 1994, one from a Rocky Mountain goat collected in the USA prior to 1987. These five strains represented a population different from the populations belonging to the 'Mycoplasma mycoides cluster' as tested using multi locus sequence typing, Matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis and DNA-DNA hybridization. Analysis of the 16S rRNA gene (rrs), genomic sequence based in silico as well as laboratory DNA-DNA hybridization, and the analysis of phenotypic traits in particular their exceptionally rapid growth all confirmed that they do not belong to any Mycoplasma species described to date. We therefore suggest these strains represent a novel species, for which we propose the name Mycoplasma feriruminatoris sp. nov. The type strain is G5847(T) (=DSM 26019(T)=NCTC 1362(T)).
Resumo:
A Tn916-like transposon (TnFO1) was found in the multiple antibiotic resistant Enterococcus faecalis strain FO1 isolated from a raw milk cheese. In this strain, the tetracycline determinant was localized by DNA-DNA hybridization with a tetM nucleotide probe on the chromosome and on a 30-kb plasmid. The transposon TnFO1 was identified and characterized by DNA-DNA hybridization experiments with the five internal HincII fragments of Tn916. The tetracycline resistance determinant was identified by its complete nucleotide sequence as TetM. Transposon TnFO1 was also detected in its circular form by DNA-DNA hybridization and PCR amplification. Both ends including the joining region of the closed circular transposon TnFO1 were sequenced. TnFO1 could be transferred by conjugation from Enterococcus faecalis into Enterococcus faecalis, Lactococcus lactis subsp. lactis biovar. diacetylactis, Listeria innocua, Leuconostoc mesenteroides and Staphylococcus aureus, and from Lactococcus lactis subsp. lactis biovar. diacetylactis into Listeria innocua. Pulsed-field electrophoresis of genomic DNA from E. faecalis FO1 transconjugants showed that transposon TnFO1 integrated at different sites.
Resumo:
Coagulase-negative staphylococci were isolated from different raw milk cheeses and raw meat products and screened for their antibiotic resistances. They were identified as Staphylococcus xylosus, S. lentus, S. caprae, S. epidemidis and S. haemolyticus. The most frequent resistances found were those to chloramphenicol, tetracycline, erythromycin and lincomycin. They have been characterized on the molecular level. The chloramphenicol resistance genes were localized in several S. xylosus and S. caprae on plasmids with sizes ranging from 3.8-kb to 4.3-kb and were identified as chloramphenicol acetyltransferase (cat). All the tetracycline resistant strains were identified as S. xylosus and harboured a 4.4-kb plasmid carrying the tetracycline efflux resistance gene (tetK). The two erythromycin/lincomycin resistant S. caprae and S. epidermidis strains did not hybridize with the MLSB resistance genes ermAM, ermA, ermB and ermC. Three erythromycin resistant Staphylococcus sp. strains harboured an erythromycin efflux resistance gene (msr) localized twice on a 18-kb plasmid and once on the chromosome. A S. haemolyticus strain showing resistance to both lincomycin and clindamycin harboured a linA gene-carrying 2.2-kb plasmid. Further resistances to gentamicin, penicillin and kanamycin were less frequently observed and yet not characterized on a molecular level.
Resumo:
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Resumo:
Agrocybe aegerita peroxidase/peroxygenase (AaP) is an extracellular fungal biocatalyst that selectively hydroxylates the aromatic ring of naphthalene. Under alkaline conditions, the reaction proceeds via the formation of an intermediary product with a molecular mass of 144 and a characteristic UV absorption spectrum (A(max) 210, 267, and 303 nm). The compound was semistable at pH 9 but spontaneously hydrolyzed under acidic conditions (pH<7) into 1-naphthol as major product and traces of 2-naphthol. Based on these findings and literature data, we propose naphthalene 1,2-oxide as the primary product of AaP-catalyzed oxygenation of naphthalene. Using (18)O-labeled hydrogen peroxide, the origin of the oxygen atom transferred to naphthalene was proved to be the peroxide that acts both as oxidant (primary electron acceptor) and oxygen source.
Resumo:
Burgundy truffles (Tuber aestivum syn. Tuber uncinatum) are the highly prized fruit bodies of subterranean fungi always occurring in ectomycorrhizal symbiosis with host plants. Successful cultivation can be achieved through artificial mycorrhization and outplanting of mostly oaks and hazel on suitable terrain. Here, we review ecological requirements, the influence of environmental factors, and the importance of molecular techniques for a successful cultivation of T. aestivum across Europe. The historical background and current knowledge of T. aestivum cultivation are discussed in light of its socioeconomic relevance.