12 resultados para Biological radiation effects
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, such as RNA metabolism, microRNA biogenesis and DNA repair. However, the precise role of FUS protein remains unclear. Recently, FUS has been linked to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS and that specifically depletes the protein. In order to characterize this cell line, we have performed a whole transcriptome analysis by RNA deep sequencing. Preliminary results show that FUS depletion affects both expression and alternative splicing levels of several RNAs. When FUS is depleted we observed 330 downregulated and 81 upregulated genes. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, to further characterize the FUS-depleted cell line we have performed growth proliferation and survival assays. From these experiments emerge that FUS-depleted cells display growth proliferation alteration. In order to explain this observation, we have tested different hypothesis (e.g. apoptosis, senescence or slow-down growth). We observed that FUS-depleted cells growth slower than controls. Currently, we are looking for putative candidate targets causing this phenotype. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.
Resumo:
Biological agents-like cytokines, monoclonal antibodies and fusion proteins are widely used in anti-inflammatory and tumour therapy. They are highly efficient in certain diseases, but can cause a great variety of adverse side-effects. Based on the peculiar features of biological agents a new classification of these adverse side-effects of biological agents is proposed - related but clearly distinct from the classification of side-effects observed with chemicals and drugs. This classification differentiates five distinct types, namely clinical reactions because of high cytokine levels (type alpha), hypersensitivity because of an immune reaction against the biological agent (beta), immune or cytokine imbalance syndromes (gamma), symptoms because of cross-reactivity (delta) and symptoms not directly affecting the immune system (epsilon). This classification could help to better deal with the clinical features of these side-effects, to identify possible individual and general risk factors and to direct research in this novel area of medicine.
Resumo:
Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.
Resumo:
In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
Microbeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels. The high resistance of the healthy vascular network was demonstrated in different animal models by in vivo biphoton microscopy, magnetic resonance imaging, and histological studies. While a transient increase in permeability was shown, the structure of the vessels remained intact. The use of a chick chorioallantoic membrane at different stages of development showed that the damages induced by microbeams depend on vessel maturation. In vivo and ultrastructural observations showed negligible effects of microbeams on the mature vasculature at late stages of development; nevertheless a complete destruction of the immature capillary plexus was found in the microbeam paths. The use of MRT in rodent models revealed a preferential effect on tumor vessels. Although no major modification was observed in the vasculature of normal brain tissue, tumors showed a denudation of capillaries accompanied by transient increased permeability followed by reduced tumor perfusion and finally, a decrease in number of tumor vessels. Thus, MRT is a very promising treatment strategy with pronounced tumor control effects most likely based on the anti-vascular effects of MRT.
Resumo:
Individuals differ in their orientation toward uncommitted sexual encounters. While previous research has given much emphasis on biological sex as important factor of influence, social determinants, such as relationship status, have been rather ignored. In the present study, the effects of biological sex and relationship status were investigated in a sample of 501 heterosexual adults (mean age: 28.1 years; 71.7 % female). Two-way analyses of variance yielded main effects of biological sex on Sociosexual Attitude and Desire implying men to be more permissive than women with regard to both facets. Relationship status had a main effect on Sociosexual Desire with singles having more permissive motivations than partnered individuals. Concerning Sociosexual Behavior, an interaction between biological sex and relationship status emerged indicating men to be more permissive than women among partnered individuals, but not among singles. Our results complement earlier research by highlighting the differential influence of biological sex and relationship status on aspects of sociosexuality.
Resumo:
Interleukin 4 (IL-4) is a pleotropic cytokine affecting a wide range of cell types in both the mouse and the human. These activities include regulation of the growth and differentiation of both T and B lymphocytes. The activities of IL-4 in nonprimate, nonmurine systems are not well established. Herein, we demonstrate in the bovine system that IL-4 upregulates production of IgM, IgG1, and IgE in the presence of a variety of costimulators including anti-IgM, Staphylococcus aureus cowan strain I, and pokeweed mitogen. IgE responses are potentiated by the addition of IL-2 to IL-4. Culture of bovine B lymphocytes with IL-4 in the absence of additional costimulators resulted in the increased surface expression of CD23 (low-affinity Fc epsilon RII), IgM, IL-2R, and MHC class II in a dose-dependent manner. IL-4 alone increased basal levels of proliferation of bulk peripheral blood mononuclear cells but in the presence of Con A inhibited proliferation. In contrast to the activities of IL-4 in the murine system, proliferation of TH1- and TH2-like clones was inhibited in a dose-dependent manner as assessed by antigen-or IL-2-driven in vitro proliferative responses. These observations are consistent with the role of IL-4 as a key player in regulation of both T and B cell responses.