12 resultados para BINUCLEAR PALLADIUM

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, beta-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(alpha,n)25Mg neutron source for the solar system s-process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epothilones are potent antiproliferative agents, which have served as successful lead structures for anticancer drug discovery. However, their therapeutic efficacy would benefit greatly from an increase in their selectivity for tumor cells, which may be achieved through conjugation with a tumor-targeting moiety. Three novel epothilone analogs bearing variously functionalized benzimidazole side chains were synthesized using a strategy based on palladium-mediated coupling and macrolactonization. The synthesis of these compounds is described and their in vitro biological activity is discussed with respect to their interactions with the tubulin/microtubule system and the inhibition of human cancer cell proliferation. The additional functional groups may be used to synthesize conjugates of epothilone derivatives with a variety of tumor-targeting moieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IEF protein binary separations were performed in a 12-μL drop suspended between two palladium electrodes, using pH gradients created by electrolysis of simple buffers at low voltages (1.5-5 V). The dynamics of pH gradient formation and protein separation were investigated by computer simulation and experimentally via digital video microscope imaging in the presence and absence of pH indicator solution. Albumin, ferritin, myoglobin, and cytochrome c were used as model proteins. A drop containing 2.4 μg of each protein was applied, electrophoresed, and allowed to evaporate until it splits to produce two fractions that were recovered by rinsing the electrodes with a few microliters of buffer. Analysis by gel electrophoresis revealed that anode and cathode fractions were depleted from high pI and low pI proteins, respectively, whereas proteins with intermediate pI values were recovered in both fractions. Comparable data were obtained with diluted bovine serum that was fortified with myoglobin and cytochrome c.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for the synthesis of pyrrolidine C-nucleosides has been developed. The key step of the synthesis is the palladium(0)-mediated coupling of a disubstituted N-protected 2-pyrroline and 5-iodouracil. C-Nucleoside 14 and its N-methyl derivative 15 can easily be converted to the corresponding phosphoramidite building blocks for DNA synthesis