72 resultados para Axial Rotation Exertion

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the present study was to determine the frequency of atlanto-axial rotatory subluxations (AARS) in multi detector computed tomography (MDCT) performed on human corpses for forensic purposes and to investigate whether these are a physiological postmortem finding or indicate a trauma to the neck region. 80 forensic cases examined with MDCT from November 2003 to March 2007 were included in the study. The study was approved by the regional ethics committee. For each case volumes were rendered and investigated with reference to suspected AARS and any other anomalies of the head and neck region. The rotation of the head as well as in the atlanto-axial joint were measured and occurring AARS were judged according Fielding's classification. The finding of AARS was correlated to case criteria such as postmortem head rotation, sex, age, cause of death, time since death and further autopsy results. Statistical analysis was performed using Fisher's exact test, Wilcoxon's rank sums test and Chi-square test with Pearson approximation. 70% (n=56) of the cases included in the study presented with an AARS. A strong correlation (P<.0001) between suspected AARS and postmortem head rotation was found. Two cases presented with an atlanto-axial rotation greater than the head rotation. One showed an undiscovered lateral dislocation of the atlas, and one an unfused atlas-ring. There was no correlation to any further investigated case criteria. Ipsilateral AARS with head rotation alone does not indicate trauma to the neck. PmCT can substantially support forensic examinations of the skeleton, especially in body regions, which are elaborate to access at autopsy, such as the cervical spine. Isolated AARS (Fielding type I) on pmCT is usually a normal finding associated with ipsilateral head rotation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the biomechanical changes induced by partial lateral corpectomy (PLC) and a combination of PLC and hemilaminectomy in a T13-L3 spinal segment in nonchondrodystrophic dogs. STUDY DESIGN: In vitro biomechanical cadaveric study. SAMPLE POPULATION: T13-L3 spinal segments (n = 10) of nonchondrodystrophic dogs (weighing, 25-38 kg). METHODS: A computed tomography (CT) scan of each T13-L3 spinal segment was performed. A loading simulator for flexibility analysis was used to determine the range of motion (ROM) and neutral zone (NZ) during flexion/extension, lateral bending, and axial rotation. A servohydraulic testing machine was used to determine the changes in stiffness during compression, dorsoventral, and lateral shear. All spines were tested intact, after PLC in the left intervertebral space of L1-L2, and after a combination of PLC and hemilaminectomy. RESULTS: Statistically significant increases in ROM and NZ (P < .05) were detected during flexion/extension and lateral bending when PLC was performed. A significant increase in ROM (P < .001) was noted during axial rotation and flexion after PLC and hemilaminectomy. Stiffness decreased significantly during compression and dorsoventral shear after each procedure. Decreased stiffness during lateral shear was only significant after a combination of both procedures. CONCLUSION: PLC might lead to some spinal instability; these changes are enhanced when a hemilaminectomy is added.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To determine stiffness and load-displacement curves as a biomechanical response to applied torsion and shear forces in cadaveric canine lumbar and lumbosacral specimens. STUDY DESIGN: Biomechanical study. ANIMALS: Caudal lumbar and lumbosacral functional spine units (FSU) of nonchondrodystrophic large-breed dogs (n=31) with radiographically normal spines. METHODS: FSU from dogs without musculoskeletal disease were tested in torsion in a custom-built spine loading simulator with 6 degrees of freedom, which uses orthogonally mounted electric motors to apply pure axial rotation. For shear tests, specimens were mounted to a custom-made shear-testing device, driven by a servo hydraulic testing machine. Load-displacement curves were recorded for torsion and shear. RESULTS: Left and right torsion stiffness was not different within each FSU level; however, torsional stiffness of L7-S1 was significantly smaller compared with lumbar FSU (L4-5-L6-7). Ventral/dorsal stiffness was significantly different from lateral stiffness within an individual FSU level for L5-6, L6-7, and L7-S1 but not for L4-5. When the data from 4 tested shear directions from the same specimen were pooled, level L5-6 was significantly stiffer than L7-S1. CONCLUSIONS: Increased range of motion of the lumbosacral joint is reflected by an overall decreased shear and rotational stiffness at the lumbosacral FSU. CLINICAL RELEVANCE: Data from dogs with disc degeneration have to be collected, analyzed, and compared with results from our chondrodystrophic large-breed dogs with radiographically normal spines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comparison between an unconstrained and a partially constrained system for in vitro biomechanical testing of the L5-S1 spinal unit was conducted. The objective was to compare the compliance and the coupling of the L5-S1 unit measured with an unconstrained and a partially constrained test for the three major physiological motions of the human spine. Very few studies have compared unconstrained and partially constrained testing systems using the same cadaveric functional spinal units (FSUs). Seven human L5-S1 units were therefore tested on both a pneumatic, unconstrained, and a servohydraulic, partially constrained system. Each FSU was tested along three motions: flexion-extension (FE), lateral bending (LB) and axial rotation (AR). The obtained kinematics on both systems is not equivalent, except for the FE case, where both motions are similar. The directions of coupled motions were similar for both tests, but their magnitudes were smaller in the partially constrained configuration. The use of a partially constrained system to characterize LB and AR of the lumbosacral FSU decreased significantly the measured stiffness of the segment. The unconstrained system is today's "gold standard" for the characterization of FSUs. The selected partially constrained method seems also to be an appropriate way to characterize FSUs for specific applications. Care should be taken using the latter method when the coupled motions are important.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical models of the intervertebral disc, which address mechanical questions commonly make use of the difference in water content between annulus and nucleus, and thus fluid and solid parts are separated. Despite this simplification, models remain complex due to the anisotropy and nonlinearity of the annulus and regional variations of the collagen fibre density. Additionally, it has been shown that cross-links make a large contribution to the stiffness of the annulus. Because of this complex composite structure, it is difficult to reproduce several sets of experimental data with one single set of material parameters. This study addresses the question to which extent the ultrastructure of the intervertebral disc should be modelled so that its moment-angle behaviour can be adequately described. Therefore, a hyperelastic constitutive law, based on continuum mechanical principles was derived, which does not only consider the anisotropy from the collagen fibres, but also interactions among the fibres and between the fibres and the ground substance. Eight ovine lumbar intervertebral discs were tested on a custom made spinal loading simulator in flexion/extension, lateral bending and axial rotation. Specimen-specific geometrical models were generated using CT images and T2 maps to distinguish between annulus fibrosus and nucleus pulposus. For the identification of the material parameters the annulus fibrosus was described with two scenarios: with and without fibre-matrix and fibre-fibre interactions. Both scenarios showed a similar behaviour on a load displacement level. Comparing model predictions to the experimental data, the mean RMS of all specimens and all load cases was 0.54±0.15° without the interaction and 0.54±0.19° when the fibre-matrix and fibre-fibre interactions were included. However, due to the increased stiffness when cross-links effects were included, this scenario showed more physiological stress-strain relations in uniaxial and biaxial stress states. Thus, the present study suggests that fibre-matrix and fibre-fibre interactions should be considered in the constitutive law when the model addresses questions concerning the stress field of the annulus fibrosus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the multidisciplinary findings in a pre-Columbian mummy head from Southern Peru (Cahuachi, Nazca civilisation, radiocarbon dating between 120 and 750 AD) of a mature male individual (40-60 years) with the first two vertebrae attached in pathological position. Accordingly, the atlanto-axial transition (C1/C2) was significantly rotated and dislocated at 38° angle associated with a bulging brownish mass that considerably reduced the spinal canal by circa 60%. Using surface microscopy, endoscopy, high-resolution multi-slice computer tomography, paleohistology and immunohistochemistry, we identified an extensive epidural hematoma of the upper cervical spinal canal-extending into the skull cavity-obviously due to a rupture of the left vertebral artery at its transition between atlas and skull base. There were no signs of fractures of the skull or vertebrae. Histological and immunohistochemical examinations clearly identified dura, brain residues and densely packed corpuscular elements that proved to represent fresh epidural hematoma. Subsequent biochemical analysis provided no evidence for pre-mortal cocaine consumption. Stable isotope analysis, however, revealed significant and repeated changes in the nutrition during his last 9 months, suggesting high mobility. Finally, the significant narrowing of the rotational atlanto-axial dislocation and the epidural hematoma probably caused compression of the spinal cord and the medulla oblongata with subsequent respiratory arrest. In conclusion, we suggest that the man died within a short period of time (probably few minutes) in an upright position with the head rotated rapidly to the right side. In paleopathologic literature, trauma to the upper cervical spine has as yet only very rarely been described, and dislocation of the vertebral bodies has not been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the performance of a newly developed examination chair as compared with the clinical standard of assessing internal rotation (IR) of the flexed hip with a goniometer. METHODS: The examination chair allowed measurement of IR in a sitting position simultaneously in both hips, with hips and knees flexed 90 degrees, lower legs hanging unsupported and a standardized load of 5 kg applied to both ankles using a bilateral pulley system. Clinical assessment of IR was performed in supine position with hips and knees flexed 90 degrees using a goniometer. Within the framework of a population-based inception cohort study, we calculated inter-observer agreement in two samples of 84 and 64 consecutive, unselected young asymptomatic males using intra-class correlation coefficients (ICC) and determined the correlation between IR assessed with examination chair and clinical assessment. RESULTS: Inter-observer agreement was excellent for the examination chair (ICC right hip, 0.92, 95% confidence interval [CI] 0.89-0.95; ICC left hip, 0.90, 95% CI 0.86-0.94), and considerably higher than that seen with clinical assessment (ICC right hip, 0.65, 95% CI 0.49-0.77; ICC left hip, 0.69, 95% CI 0.54-0.80, P for difference in ICC between examination chair and clinical assessment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A classification of injuries is necessary in order to develop a common language for treatment indications and outcomes. Several classification systems have been proposed, the most frequently used is the Denis classification. The problem of this classification system is that it is based on an assumption, which is anatomically unidentifiable: the so-called middle column. For this reason, few years ago, a group of spine surgeons has developed a new classification system, which is based on the severity of the injury. The severity is defined by the pathomorphological findings, the prognosis in terms of healing and potential of neurological damage. This classification is based on three major groups: A = isolated anterior column injuries by axial compression, B = disruption of the posterior ligament complex by distraction posteriorly, and group C = corresponding to group B but with rotation. There is an increasing severity from A to C, and within each group, the severity usually increases within the subgroups from .1, .2, .3. All these pathomorphologies are supported by a mechanism of injury, which is responsible for the extent of the injury. The type of injury with its groups and subgroups is able to suggest the treatment modality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical stress controls a broad range of cellular functions. The cytoskeleton is physically connected to the extracellular matrix via integrin receptors, and to the nuclear lamina by the LINC complex that spans both nuclear membranes. We asked here how disruption of this direct link from the cytoskeleton to nuclear chromatin affects mechanotransduction. Fibroblasts grown on flexible silicone membranes reacted to cyclic stretch by nuclear rotation. This rotation was abolished by inhibition of actomyosin contraction as well as by overexpression of dominant-negative versions of nesprin or sun proteins that form the LINC complex. In an in vitro model of muscle differentiation, cyclic strain inhibits differentiation and induces proliferation of C2C12 myoblasts. Interference with the LINC complex in these cells abrogated their stretch-induced proliferation, while stretch increased p38 MAPK and NFkappaB phosphorylation and the transcript levels of myogenic transcription factors MyoD and myogenin. We found that the physical link from the cytoskeleton to the nuclear lamina is crucial for correct mechanotransduction, and that disruption of the LINC complex perturbs the mechanical control of cell differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine the wear behavior of conical crowns of gold alloy and zirconium dioxide ceramics facing electroplated gold copings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the ischial spine sign (ISS) has been advocated to detect acetabular retroversion, it is unknown whether the sign is valid on anteroposterior (AP) pelvic radiographs with tilted or rotated pelves. We therefore evaluated reliability of the ISS as a tool for diagnosing acetabular retroversion in the presence of considerable pelvic tilt and/or malrotation. We obtained radiographs of 20 cadaver pelves in 19 different malorientations resulting in 380 pelvis images (760 hips) for evaluation. In addition, 129 clinical radiographs of patients' hips that had varying pelvis orientations were reviewed. We found an overall sensitivity of 81% (90%), specificity of 70% (71%), positive predictive value of 77% (80.7%), and negative predictive value of 75% (85%) in the cadaver (patient) hips. Our data suggest the ISS is a valid tool for diagnosing acetabular retroversion on plain radiographs taken using a standardized technique regardless of the degree of pelvic tilt and rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolated lateral malleolar fractures usually result from a supination-external rotation (SER) injury and may include a deltoid ligament rupture. The necessity of operative treatment is based on the recognition of a relevant medial soft-tissue disruption. Currently used tests to assess ankle stability include manual stress radiographs and gravity stress radiographs, but seem to overestimate the need for fracture fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In patients with a rotator cuff-deficient shoulder, a combined loss of active elevation and external rotation (CLEER) can occur when both the infraspinatus and teres minor muscles are absent. A reverse shoulder arthroplasty (RSA) can restore active elevation in these patients but cannot restore active external rotation because there are no other external rotator cuff muscles. We hypothesized that a modified L'Episcopo procedure (latissimus dorsi [LD] and teres major [TM] transfer) with a simultaneous RSA would restore shoulder function and activities of daily living (ADLs).