4 resultados para Automorphism group

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide explicit families of tame automorphisms of the complex affine three-space which degenerate to wild automorphisms. This shows that the tame subgroup of the group of polynomial automorphisms of C3 is not closed, when the latter is seen as an infinite-dimensional algebraic group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Given an irreducible affine algebraic variety X of dimension n≥2 , we let SAut(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group Aut(X) generated by all one-parameter unipotent subgroups. We show that if SAut(X) is transitive on the smooth locus X reg , then it is infinitely transitive on X reg . In turn, the transitivity is equivalent to the flexibility of X . The latter means that for every smooth point x∈X reg the tangent space T x X is spanned by the velocity vectors at x of one-parameter unipotent subgroups of Aut(X) . We also provide various modifications and applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We apply Nevanlinna theory for algebraic varieties to Danielewski surfaces and investigate their group of holomorphic automorphisms. Our main result states that the overshear group, which is known to be dense in the identity component of the holomorphic automorphism group, is a free product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct holomorphic families of proper holomorphic embeddings of \mathbb {C}^{k} into \mathbb {C}^{n} (0\textless k\textless n-1), so that for any two different parameters in the family, no holomorphic automorphism of \mathbb {C}^{n} can map the image of the corresponding two embeddings onto each other. As an application to the study of the group of holomorphic automorphisms of \mathbb {C}^{n}, we derive the existence of families of holomorphic \mathbb {C}^{*}-actions on \mathbb {C}^{n} (n\ge5) so that different actions in the family are not conjugate. This result is surprising in view of the long-standing holomorphic linearization problem, which, in particular, asked whether there would be more than one conjugacy class of \mathbb {C}^{*}-actions on \mathbb {C}^{n} (with prescribed linear part at a fixed point).