Flexible varieties and automorphism groups


Autoria(s): Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M.
Data(s)

2013

Resumo

Given an irreducible affine algebraic variety X of dimension n≥2 , we let SAut(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group Aut(X) generated by all one-parameter unipotent subgroups. We show that if SAut(X) is transitive on the smooth locus X reg , then it is infinitely transitive on X reg . In turn, the transitivity is equivalent to the flexibility of X . The latter means that for every smooth point x∈X reg the tangent space T x X is spanned by the velocity vectors at x of one-parameter unipotent subgroups of Aut(X) . We also provide various modifications and applications.

Formato

application/pdf

Identificador

http://boris.unibe.ch/41957/1/report10-14.pdf

Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M. (2013). Flexible varieties and automorphism groups. Duke Mathematical Journal, 162(4), pp. 767-823. Duke University Press 10.1215/00127094-2080132 <http://dx.doi.org/10.1215/00127094-2080132>

doi:10.7892/boris.41957

info:doi:10.1215/00127094-2080132

urn:issn:0012-7094

Idioma(s)

eng

Publicador

Duke University Press

Relação

http://boris.unibe.ch/41957/

http://dx.doi.org/10.1215/00127094-2080132

Direitos

info:eu-repo/semantics/openAccess

Fonte

Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M. (2013). Flexible varieties and automorphism groups. Duke Mathematical Journal, 162(4), pp. 767-823. Duke University Press 10.1215/00127094-2080132 <http://dx.doi.org/10.1215/00127094-2080132>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed