Flexible varieties and automorphism groups
Data(s) |
2013
|
---|---|
Resumo |
Given an irreducible affine algebraic variety X of dimension n≥2 , we let SAut(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group Aut(X) generated by all one-parameter unipotent subgroups. We show that if SAut(X) is transitive on the smooth locus X reg , then it is infinitely transitive on X reg . In turn, the transitivity is equivalent to the flexibility of X . The latter means that for every smooth point x∈X reg the tangent space T x X is spanned by the velocity vectors at x of one-parameter unipotent subgroups of Aut(X) . We also provide various modifications and applications. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/41957/1/report10-14.pdf Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M. (2013). Flexible varieties and automorphism groups. Duke Mathematical Journal, 162(4), pp. 767-823. Duke University Press 10.1215/00127094-2080132 <http://dx.doi.org/10.1215/00127094-2080132> doi:10.7892/boris.41957 info:doi:10.1215/00127094-2080132 urn:issn:0012-7094 |
Idioma(s) |
eng |
Publicador |
Duke University Press |
Relação |
http://boris.unibe.ch/41957/ http://dx.doi.org/10.1215/00127094-2080132 |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M. (2013). Flexible varieties and automorphism groups. Duke Mathematical Journal, 162(4), pp. 767-823. Duke University Press 10.1215/00127094-2080132 <http://dx.doi.org/10.1215/00127094-2080132> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |