6 resultados para Automorphism

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an irreducible affine algebraic variety X of dimension n≥2 , we let SAut(X) denote the special automorphism group of X , that is, the subgroup of the full automorphism group Aut(X) generated by all one-parameter unipotent subgroups. We show that if SAut(X) is transitive on the smooth locus X reg , then it is infinitely transitive on X reg . In turn, the transitivity is equivalent to the flexibility of X . The latter means that for every smooth point x∈X reg the tangent space T x X is spanned by the velocity vectors at x of one-parameter unipotent subgroups of Aut(X) . We also provide various modifications and applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide explicit families of tame automorphisms of the complex affine three-space which degenerate to wild automorphisms. This shows that the tame subgroup of the group of polynomial automorphisms of C3 is not closed, when the latter is seen as an infinite-dimensional algebraic group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct holomorphic families of proper holomorphic embeddings of \mathbb {C}^{k} into \mathbb {C}^{n} (0\textless k\textless n-1), so that for any two different parameters in the family, no holomorphic automorphism of \mathbb {C}^{n} can map the image of the corresponding two embeddings onto each other. As an application to the study of the group of holomorphic automorphisms of \mathbb {C}^{n}, we derive the existence of families of holomorphic \mathbb {C}^{*}-actions on \mathbb {C}^{n} (n\ge5) so that different actions in the family are not conjugate. This result is surprising in view of the long-standing holomorphic linearization problem, which, in particular, asked whether there would be more than one conjugacy class of \mathbb {C}^{*}-actions on \mathbb {C}^{n} (with prescribed linear part at a fixed point).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades affine algebraic varieties and Stein manifolds with big (infinite-dimensional) automorphism groups have been intensively studied. Several notions expressing that the automorphisms group is big have been proposed. All of them imply that the manifold in question is an Oka–Forstnerič manifold. This important notion has also recently merged from the intensive studies around the homotopy principle in Complex Analysis. This homotopy principle, which goes back to the 1930s, has had an enormous impact on the development of the area of Several Complex Variables and the number of its applications is constantly growing. In this overview chapter we present three classes of properties: (1) density property, (2) flexibility, and (3) Oka–Forstnerič. For each class we give the relevant definitions, its most significant features and explain the known implications between all these properties. Many difficult mathematical problems could be solved by applying the developed theory, we indicate some of the most spectacular ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply Nevanlinna theory for algebraic varieties to Danielewski surfaces and investigate their group of holomorphic automorphisms. Our main result states that the overshear group, which is known to be dense in the identity component of the holomorphic automorphism group, is a free product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide counterexamples to the stable equivalence problem in every dimension d ≥ 2. That means that we construct hypersurfaces H₁ , H₂ ⊂ C d+1 whose cylinders H₁ × C and H₂ × C are equivalent hypersurfaces in C d+2 , although H₁ and H₂ themselves are not equivalent by an automorphism of C d+1 . We also give, for every d ≥ 2, examples of two non-isomorphic algebraic varieties of dimension d which are biholomorphic.