76 resultados para Automatic image analysis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphometric investigations using a point and intersection counting strategy in the lung often are not able to reveal the full set of morphologic changes. This happens particularly when structural modifications are not expressed in terms of volume density changes and when rough and fine surface density alterations cancel each other at different magnifications. Making use of digital image processing, we present a methodological approach that allows to easily and quickly quantify changes of the geometrical properties of the parenchymal lung structure and reflects closely the visual appreciation of the changes. Randomly sampled digital images from light microscopic sections of lung parenchyma are filtered, binarized, and skeletonized. The lung septa are thus represented as a single-pixel wide line network with nodal points and end points and the corresponding internodal and end segments. By automatically counting the number of points and measuring the lengths of the skeletal segments, the lung architecture can be characterized and very subtle structural changes can be detected. This new methodological approach to lung structure analysis is highly sensitive to morphological changes in the parenchyma: it detected highly significant quantitative alterations in the structure of lungs of rats treated with a glucocorticoid hormone, where the classical morphometry had partly failed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids (GC) are successfully applied in neonatology to improve lung maturation in preterm born babies. Animal studies show that GC can also impair lung development. In this investigation, we used a new approach based on digital image analysis. Microscopic images of lung parenchyma were skeletonised and the geometrical properties of the septal network characterised by analysing the 'skeletal' parameters. Inhibition of the process of alveolarisation after extensive administration of small doses of GC in newborn rats was confirmed by significant changes in the 'skeletal' parameters. The induced structural changes in the lung parenchyma were still present after 60 days in adult rats, clearly indicating a long lasting or even definitive impairment of lung development and maturation caused by GC. Conclusion: digital image analysis and skeletonisation proved to be a highly suited approach to assess structural changes in lung parenchyma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water flow and solute transport through soils are strongly influenced by the spatial arrangement of soil materials with different hydraulic and chemical properties. Knowing the specific or statistical arrangement of these materials is considered as a key toward improved predictions of solute transport. Our aim was to obtain two-dimensional material maps from photographs of exposed profiles. We developed a segmentation and classification procedure and applied it to the images of a very heterogeneous sand tank, which was used for a series of flow and transport experiments. The segmentation was based on thresholds of soil color, estimated from local median gray values, and of soil texture, estimated from local coefficients of variation of gray values. Important steps were the correction of inhomogeneous illumination and reflection, and the incorporation of prior knowledge in filters used to extract the image features and to smooth the results morphologically. We could check and confirm the success of our mapping by comparing the estimated with the designed sand distribution in the tank. The resulting material map was used later as input to model flow and transport through the sand tank. Similar segmentation procedures may be applied to any high-density raster data, including photographs or spectral scans of field profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantification of protein expression based on immunohistochemistry (IHC) is an important step in clinical diagnoses and translational tissue-based research. Manual scoring systems are used in order to evaluate protein expression based on staining intensities and distribution patterns. However, visual scoring remains an inherently subjective approach. The aim of our study was to explore whether digital image analysis proves to be an alternative or even superior tool to quantify expression of membrane-bound proteins. We analyzed five membrane-binding biomarkers (HER2, EGFR, pEGFR, β-catenin, and E-cadherin) and performed IHC on tumor tissue microarrays from 153 esophageal adenocarcinomas patients from a single center study. The tissue cores were scored visually applying an established routine scoring system as well as by using digital image analysis obtaining a continuous spectrum of average staining intensity. Subsequently, we compared both assessments by survival analysis as an end point. There were no significant correlations with patient survival using visual scoring of β-catenin, E-cadherin, pEGFR, or HER2. In contrast, the results for digital image analysis approach indicated that there were significant associations with disease-free survival for β-catenin, E-cadherin, pEGFR, and HER2 (P = 0.0125, P = 0.0014, P = 0.0299, and P = 0.0096, respectively). For EGFR, there was a greater association with patient survival when digital image analysis was used compared to when visual scoring was (visual: P = 0.0045, image analysis: P < 0.0001). The results of this study indicated that digital image analysis was superior to visual scoring. Digital image analysis is more sensitive and, therefore, better able to detect biological differences within the tissues with greater accuracy. This increased sensitivity improves the quality of quantification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to identify morphologic factors affecting type I endoleak formation and bird-beak configuration after thoracic endovascular aortic repair (TEVAR). METHODS Computed tomography (CT) data of 57 patients (40 males; median age, 66 years) undergoing TEVAR for thoracic aortic aneurysm (34 TAA, 19 TAAA) or penetrating aortic ulcer (n = 4) between 2001 and 2010 were retrospectively reviewed. In 28 patients, the Gore TAG® stent-graft was used, followed by the Medtronic Valiant® in 16 cases, the Medtronic Talent® in 8, and the Cook Zenith® in 5 cases. Proximal landing zone (PLZ) was in zone 1 in 13, zone 2 in 13, zone 3 in 23, and zone 4 in 8 patients. In 14 patients (25%), the procedure was urgent or emergent. In each case, pre- and postoperative CT angiography was analyzed using a dedicated image processing workstation and complimentary in-house developed software based on a 3D cylindrical intensity model to calculate aortic arch angulation and conicity of the landing zones (LZ). RESULTS Primary type Ia endoleak rate was 12% (7/57) and subsequent re-intervention rate was 86% (6/7). Left subclavian artery (LSA) coverage (p = 0.036) and conicity of the PLZ (5.9 vs. 2.6 mm; p = 0.016) were significantly associated with an increased type Ia endoleak rate. Bird-beak configuration was observed in 16 patients (28%) and was associated with a smaller radius of the aortic arch curvature (42 vs. 65 mm; p = 0.049). Type Ia endoleak was not associated with a bird-beak configuration (p = 0.388). Primary type Ib endoleak rate was 7% (4/57) and subsequent re-intervention rate was 100%. Conicity of the distal LZ was associated with an increased type Ib endoleak rate (8.3 vs. 2.6 mm; p = 0.038). CONCLUSIONS CT-based 3D aortic morphometry helps to identify risk factors of type I endoleak formation and bird-beak configuration during TEVAR. These factors were LSA coverage and conicity within the landing zones for type I endoleak formation and steep aortic angulation for bird-beak configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-step etching technique for fine-grained calcite mylonites using 0.37% hydrochloric and 0.1% acetic acid produces a topographic relief which reflects the grain boundary geometry. With this technique, calcite grain boundaries become more intensely dissolved than their grain interiors but second phase minerals like dolomite, quartz, feldspars, apatite, hematite and pyrite are not affected by the acid and therefore form topographic peaks. Based on digital backscatter electron images and element distribution maps acquired on a scanning electron microscope, the geometry of calcite and the second phase minerals can be automatically quantified using image analysis software. For research on fine-grained carbonate rocks (e.g. dolomite calcite mixtures), this low-cost approach is an attractive alternative to the generation of manual grain boundary maps based on photographs from ultra-thin sections or orientation contrast images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other methods where each image patch independently predicts its displacement, we jointly estimate the displacements from all patches together in a data driven way, by considering not only the training data but also geometric constraints on the test image. The displacements estimation is formulated as a convex optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model as the a priori information to regularize the landmark positions and thus generate the segmented shape contour. We validate our method on X-ray image datasets of three different anatomical structures: complete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in landmark detection, and, combined with the shape model, gives a better or comparable performance in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data shows the extensibility of our method to 3D data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated X-ray images. The automatic initialization is solved by an estimation of Bayesian network algorithm to fit a multiple component geometrical model to the X-ray data. The contour extraction is accomplished by a non-rigid 2D/3D registration between a 3D statistical model and the X-ray images, in which bone contours are extracted by a graphical model based Bayesian inference. Preliminary experiments on clinical data sets verified its validity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To analyze the impact of opacities in the optical pathway and image compression of 32-bit raw data to 8-bit jpg images on quantified optical coherence tomography (OCT) image analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point Distribution Models (PDM) are among the most popular shape description techniques and their usefulness has been demonstrated in a wide variety of medical imaging applications. However, to adequately characterize the underlying modeled population it is essential to have a representative number of training samples, which is not always possible. This problem is especially relevant as the complexity of the modeled structure increases, being the modeling of ensembles of multiple 3D organs one of the most challenging cases. In this paper, we introduce a new GEneralized Multi-resolution PDM (GEM-PDM) in the context of multi-organ analysis able to efficiently characterize the different inter-object relations, as well as the particular locality of each object separately. Importantly, unlike previous approaches, the configuration of the algorithm is automated thanks to a new agglomerative landmark clustering method proposed here, which equally allows us to identify smaller anatomically significant regions within organs. The significant advantage of the GEM-PDM method over two previous approaches (PDM and hierarchical PDM) in terms of shape modeling accuracy and robustness to noise, has been successfully verified for two different databases of sets of multiple organs: six subcortical brain structures, and seven abdominal organs. Finally, we propose the integration of the new shape modeling framework into an active shape-model-based segmentation algorithm. The resulting algorithm, named GEMA, provides a better overall performance than the two classical approaches tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.