2 resultados para Automatic Translation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7+/-2.8 degrees and 4.0+/-2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6+/-2.6 degrees and 1.3+/-1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213+/-197 s; automatic registration took 82+/-15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9+/-2.9 degrees and 1.1+/-0.2 mm. Here, a registration took 91+/-6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.
Resumo:
This paper describes methods and results for the annotation of two discourse-level phenomena, connectives and pronouns, over a multilingual parallel corpus. Excerpts from Europarl in English and French have been annotated with disambiguation information for connectives and pronouns, for about 3600 tokens. This data is then used in several ways: for cross-linguistic studies, for training automatic disambiguation software, and ultimately for training and testing discourse-aware statistical machine translation systems. The paper presents the annotation procedures and their results in detail, and overviews the first systems trained on the annotated resources and their use for machine translation.