9 resultados para Aluminum nitrates
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The purpose of this study is to assess clinical and microbiologic effects of the non-surgical treatment of peri-implantitis lesions using either an erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser or an air-abrasive subgingival polishing method.
Resumo:
To assess pain and swelling in the first 7 days after periapical surgery and their relationship with the agent used for bleeding control.
Resumo:
BACKGROUND The sympathetic nervous system (SNS) is an important regulator of cardiovascular function. Activation of SNS plays an important role in the pathophysiology and the prognosis of cardiovascular diseases such as heart failure, acute coronary syndromes, arrhythmia, and possibly hypertension. Vasodilators such as adenosine and sodium nitroprusside are known to activate SNS via baroreflex mechanisms. Because vasodilators are widely used in the treatment of patients with cardiovascular diseases, the aim of the present study was to assess the influence of clinically used dosages of isosorbide dinitrate and captopril on sympathetic nerve activity at rest and during stimulatory maneuvers. METHODS AND RESULTS Twenty-eight healthy volunteers were included in this double-blind placebo-controlled study, and muscle sympathetic nerve activity (MSA; with microelectrodes in the peroneal nerve), blood pressure, heart rate, and neurohumoral parameters were measured before and 90 minutes after the oral administration of 40 mg isosorbide dinitrate or 6.25 mg captopril. Furthermore, a 3-minute mental stress test and a cold pressor test were performed before and 90 minutes after drug administration. Resting MSA did not change after captopril and decreased compared with placebo (P < .05 versus placebo), whereas isosorbide dinitrate led to a marked increase in MSA (P < .05). Systolic blood pressure was reduced by isosorbide dinitrate (P < .05), whereas captopril decreased diastolic blood pressure (P < .05). The increases in MSA, blood pressure, and heart rate during mental stress were comparable before and after drug administration regardless of the medication. During cold pressor test, MSA and systolic and diastolic blood pressures increased to the same degree independent of treatment, but after isosorbide dinitrate, the increase in MSA seemed to be less pronounced. Heart rate did not change during cold stimulation. Plasma renin activity increased after captopril and isosorbide dinitrate (P < .05), whereas placebo had no effect. Endothelin-1 increased after placebo and isosorbide dinitrate (P < .05) but not after captopril. CONCLUSIONS Thus, captopril suppressed MSA despite lowering of diastolic blood pressure but allowed normal adaptation of the SNS during mental or physical stress. In contrast, the nitrate strongly activated the SNS under baseline conditions. These findings demonstrate that vasodilators differentially interact with the SNS, which could be of importance in therapeutic strategies for the treatment of patients with cardiovascular diseases.
Resumo:
OBJECTIVE To evaluate the effects of different hemostatic agents upon the outcome of periapical surgery. DESIGN A retrospective study was made of patients subjected to periapical surgery between 2006-2009 with the ultrasound technique and using MTA as retrograde filler material. We included patients with a minimum follow-up of 12 months, divided into two groups according to the hemostatic agent used: A) dressings impregnated in anesthetic solution with adrenalin; or B) aluminum chloride paste (Expasyl). Radiological controls were made after 6 and 12 months, and on the last visit. The global evolution scale proposed by von Arx and Kurt (1999) was used to establish the outcome of periapical surgery. RESULTS A total of 96 patients (42 males and 54 females) with a mean age of 40.7 years were included. There were 50 patients in the aluminum chloride group and 46 patients in the anesthetic solution with vasoconstrictor group. No significant differences were observed between the two groups in terms of outcome after 12 months - the success rate being 58.6% and 61.7% in the anesthetic solution with vasoconstrictor and aluminum chloride groups, respectively (p > 0.05). CONCLUSION The outcome after 12 months of follow-up was better in the aluminum chloride group than in the anesthetic solution with vasoconstrictor group, though the difference was not significant.
Resumo:
In acid tropical forest soils (pH < 5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador. An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 mu M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC). Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 mu M Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 mu M (T. chrysantha). EC10 (i.e. reduction by 10 %) values of Al for total biomass were 315 mu M (C. odorata), 219 mu M (H. americanus), and 368 mu M (T. chrysantha). Helicarpus americanus, a fast growing pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity. Al toxicity occurred at Al concentrations far above those in native organic layer leachate.
Resumo:
Aluminum phytotoxicity frequently occurs in acid soils (pH < 5.5) and was therefore discussed to affect ecosystem functioning of tropical montane forests. The susceptibility to Al toxicity depends on the sensitivity of the plant species and the Al speciation in soil solution, which can vary highly depending e.g., on pH, ionic strength, and dissolved organic matter. An acidification of the ecosystem and periodic base metal deposition from Saharan dust may control plant available Al concentrations in the soil solutions of tropical montane rainforests in south Ecuador. The overall objective of my study was to assess a potential Al phytotoxicity in the tropical montane forests in south Ecuador. For this purpose, I exposed three native Al non-accumulating tree species (Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson) to increased Al concentrations (0 – 2400 μM Al) in a hydroponic experiment, I established dose-response curves to estimate the sensitivity of the tree species to increased Al concentrations, and I investigated the mechanisms behind the observed effects induced by elevated Al concentrations. Furthermore, the response of Al concentrations and the speciation in soil solution to Ca amendment in the study area were determined. In a final step, I assessed all major Al fluxes, drivers of Al concentrations in ecosystem solutions, and indicators of Al toxicity in the tropical montane rainforest in Ecuador in order to test for indications of Al toxicity. In the hydroponic experiment, a 10 % reduction in aboveground biomass production occurred at 126 to 376 μM Al (EC10 values), probably attributable to decreased Mg concentrations in leaves and reduced potosynthesis. At 300 μM Al, increased root biomass production of T. chrysantha was observed. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass, being a likely reason for stimulated root biomass production. The degree of organic complexation of Al in the organic layer leachate, which is central to plant nutrition because of the high root density, and soil solution from the study area was very high (mean > 99 %). The resulting low free Al concentrations are not likely to affect plant growth, although the concentrations of potentially toxic Al3+ increased with soil depth due to higher total Al and lower dissolved organic matter concentrations in soil solutions. The Ca additions caused an increase of Al in the organic layer leachate, probably because Al3+ was exchanged against the added Ca2+ ions while pH remained constant. The free ion molar ratios of Ca2+:Al3+ (mean ratio ca. 400) were far above the threshold (≤ 1) for Al toxicity, because of a much higher degree of organo-complexation of Al than Ca. High Al fluxes in litterfall (8.8 – 14.2 kg ha−1 yr−1) indicate a high Al circulation through the ecosystem. The Al concentrations in the organic layer leachate were driven by the acidification of the ecosystem and increased significantly between 1999 and 2008. However, the Ca:Al molar ratios in organic layer leachate and all aboveground ecosystem solutions were above the threshold for Al toxicity. Except for two Al accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves from the study area were above the Al toxicity threshold of 12.5. I conclude that toxic effects in the hydroponic experiment occurred at Al concentrations far above those in native organic layer leachate, shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis, and the stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake. Dissolved organic matter in soil solutions detoxifies Al in acidic tropical forest soils and a wide distribution of Al accumulating tree species and high Al fluxes in the ecosystem do not necessarily imply a general Al phytotoxicity.