39 resultados para Affine Hjelmslev Plane
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we generalize the algebraic density property to not necessarily smooth affine varieties relative to some closed subvariety containing the singular locus. This property implies the remarkable approximation results for holomorphic automorphisms of the Andersén–Lempert theory. We show that an affine toric variety X satisfies this algebraic density property relative to a closed T-invariant subvariety Y if and only if X∖Y≠TX∖Y≠T. For toric surfaces we are able to classify those which possess a strong version of the algebraic density property (relative to the singular locus). The main ingredient in this classification is our proof of an equivariant version of Brunella's famous classification of complete algebraic vector fields in the affine plane.
Resumo:
We report a new technique for vertical enlargement of the inferior border of the mandible.
Resumo:
An incongruity between instrument and articular surfaces in osteochondral transfer (OCT) results in unevenly distributed impact forces exerted on the cartilage which may cause a loss of functional chondrocytes. We tested whether a plane instead of a concave design of the punch of an osteotome can reduce these cartilage damages.
Resumo:
Knowledge about segmental flexibility in adolescent idiopathic scoliosis is crucial for a better biomechanical understanding, particularly for the development of fusionless, growth-guiding techniques. Currently, there is lack of data in this field. The objective of this study was, therefore, to compute segmental flexibility indices (standing angle minus corrected angle/standing angle). We compared segmental disc angles in 76 preoperative sets of standing and fulcrum-bending radiographs of thoracic curves (paired, two-tailed t tests, p < 0.05). The mean standing Cobb angle was 59.7 degrees (range 41.3 degrees -95 degrees ) and the flexibility index of the curve was 48.6\% (range 16.6-78.8\%). The disc angles showed symmetric periapical distribution with significant decrease (all p values <0.0001) for every cephalad (+) and caudad (-) level change. The periapical levels +1 and -1 wedged at 8.3 degrees and 8.7 degrees (range 3.5 degrees -14.8 degrees ), respectively. All angles were significantly smaller on the-bending views (p values <0.0001). We noted mean periapical flexibility indices of 46\% (+1), 49\% (-1), 57\% (+2) and 81\% (-2), which were significantly less (p < 0.001) than for the group of remote levels 105\% (+3), 149\% (-3), 231\% (+4) and 300\% (-4). The discal and bony wedging was 60 and 40\%, respectively, and mean values 35 degrees and 24 degrees (p < 0.0001). Their relationship with the Cobb angle showed a moderate correlation (r = 0.56 and 0.45). Functional, radiographic analysis of idiopathic thoracic scoliosis revealed significant, homogenous segmental tethering confined to four periapical levels. Future research will aim at in vivo segmental measurements in three planes under defined load to provide in-depth data for novel therapeutic strategies.