37 resultados para Adaptive system theory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Dieser Beitrag beschäftigt sich kritisch mit dem von Wolfgang Schöllhorn seit 1999 propagierten Ansatz des differenziellen Lehrens und Lernens. Nach einer Einordnung in die historische bewegungswissenschaftliche Debatte um den Informationsverarbeitungsansatz und die dynamische Systemtheorie zeigen wir, dass die von Schöllhorn behaupteten Praxiskonsequenzen theoretisch nicht fundiert sind, dass die Abgrenzung zu konkurrierenden Lerntheorien lücken- und fehlerhaft ausfällt, dass die präsentierte empirische Befundlage auf höchst wackeligen Füßen steht und dass der Ansatz sich auch aus Praxissicht als nicht tragfähig erweist. Mit Blick auf fatale Konsequenzen sowohl für die Sportpraxis als auch für die Sportwissenschaft empfehlen wir, in zukünftigen Publikationen zum differenziellen Lernen auf fehlerhafte und theoretisch wie empirisch unbegründete Praxisempfehlungen zu verzichten.
Resumo:
Aim: The landscape metaphor allows viewing corrective experiences (CE) as pathway to a state with relatively lower 'tension' (local minimum). However, such local minima are not easily accessible but obstructed by states with relatively high tension (local maxima) according to the landscape metaphor (Caspar & Berger, 2012). For example, an individual with spider phobia has to transiently tolerate high levels of tension during an exposure therapy to access the local minimum of habituation. To allow for more specific therapeutic guidelines and empirically testable hypotheses, we advance the landscape metaphor to a scientific model which bases on motivational processes. Specifically, we conceptualize CEs as available but unusual trajectories (=pathways) through a motivational space. The dimensions of the motivational state are set up by basic motives such as need for agency or attachment. Methods: Dynamic system theory is used to model motivational states and trajectories using mathematical equations. Fortunately, these equations have easy-to-comprehend and intuitive visual representations similar to the landscape metaphor. Thus, trajectories that represent CEs are informative and action guiding for both therapists and patients without knowledge on dynamic systems. However, the mathematical underpinnings of the model allow researchers to deduct hypotheses for empirical testing. Results: First, the results of simulations of CEs during exposure therapy in anxiety disorders are presented and compared to empirical findings. Second, hypothetical CEs in an autonomy-attachment conflict are reported from a simulation study. Discussion: Preliminary clinical implications for the evocation of CEs are drawn after a critical discussion of the proposed model.
Resumo:
Early warning of future hypoglycemic and hyperglycemic events can improve the safety of type 1 diabetes mellitus (T1DM) patients. The aim of this study is to design and evaluate a hypoglycemia/hyperglycemia early warning system (EWS) for T1DM patients under sensor-augmented pump (SAP) therapy.
An Early-Warning System for Hypo-/Hyperglycemic Events Based on Fusion of Adaptive Prediction Models
Resumo:
Introduction: Early warning of future hypoglycemic and hyperglycemic events can improve the safety of type 1 diabetes mellitus (T1DM) patients. The aim of this study is to design and evaluate a hypoglycemia / hyperglycemia early warning system (EWS) for T1DM patients under sensor-augmented pump (SAP) therapy. Methods: The EWS is based on the combination of data-driven online adaptive prediction models and a warning algorithm. Three modeling approaches have been investigated: (i) autoregressive (ARX) models, (ii) auto-regressive with an output correction module (cARX) models, and (iii) recurrent neural network (RNN) models. The warning algorithm performs postprocessing of the models′ outputs and issues alerts if upcoming hypoglycemic/hyperglycemic events are detected. Fusion of the cARX and RNN models, due to their complementary prediction performances, resulted in the hybrid autoregressive with an output correction module/recurrent neural network (cARN)-based EWS. Results: The EWS was evaluated on 23 T1DM patients under SAP therapy. The ARX-based system achieved hypoglycemic (hyperglycemic) event prediction with median values of accuracy of 100.0% (100.0%), detection time of 10.0 (8.0) min, and daily false alarms of 0.7 (0.5). The respective values for the cARX-based system were 100.0% (100.0%), 17.5 (14.8) min, and 1.5 (1.3) and, for the RNN-based system, were 100.0% (92.0%), 8.4 (7.0) min, and 0.1 (0.2). The hybrid cARN-based EWS presented outperforming results with 100.0% (100.0%) prediction accuracy, detection 16.7 (14.7) min in advance, and 0.8 (0.8) daily false alarms. Conclusion: Combined use of cARX and RNN models for the development of an EWS outperformed the single use of each model, achieving accurate and prompt event prediction with few false alarms, thus providing increased safety and comfort.
Resumo:
Recent experiments revealed that the fruit fly Drosophila melanogaster has a dedicated mechanism for forgetting: blocking the G-protein Rac leads to slower and activating Rac to faster forgetting. This active form of forgetting lacks a satisfactory functional explanation. We investigated optimal decision making for an agent adapting to a stochastic environment where a stimulus may switch between being indicative of reward or punishment. Like Drosophila, an optimal agent shows forgetting with a rate that is linked to the time scale of changes in the environment. Moreover, to reduce the odds of missing future reward, an optimal agent may trade the risk of immediate pain for information gain and thus forget faster after aversive conditioning. A simple neuronal network reproduces these features. Our theory shows that forgetting in Drosophila appears as an optimal adaptive behavior in a changing environment. This is in line with the view that forgetting is adaptive rather than a consequence of limitations of the memory system.
Resumo:
Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.
Resumo:
The theory of ecological speciation suggests that assortative mating evolves most easily when mating preferences are;directly linked to ecological traits that are subject to divergent selection. Sensory adaptation can play a major role in this process,;because selective mating is often mediated by sexual signals: bright colours, complex song, pheromone blends and so on. When;divergent sensory adaptation affects the perception of such signals, mating patterns may change as an immediate consequence.;Alternatively, mating preferences can diverge as a result of indirect effects: assortative mating may be promoted by selection;against intermediate phenotypes that are maladapted to their (sensory) environment. For Lake Victoria cichlids, the visual environment;constitutes an important selective force that is heterogeneous across geographical and water depth gradients. We investigate;the direct and indirect effects of this heterogeneity on the evolution of female preferences for alternative male nuptial colours;(red and blue) in the genus Pundamilia. Here, we review the current evidence for divergent sensory drive in this system, extract;general principles, and discuss future perspectives
Resumo:
Healthy individuals live in peaceful co-existence with an immense load of intestinal bacteria. This symbiosis is advantageous for both the host and the bacteria. For the host it provides access to otherwise undigestible nutrients and colonization resistance against pathogens. In return the bacteria receive an excellent nutrient habitat. The mucosal immune adaptations to the presence of this commensal intestinal microflora are manifold. Although bacterial colonization has clear systemic consequences, such as maturation of the immune system, it is striking that the mutualistic adaptive (T and B cells) and innate immune responses are precisely compartmentalized to the mucosal immune system. Here we summarize the mechanisms of mucosal immune compartmentalization and its importance for a healthy host-microbiota mutualism.
Resumo:
The interaction of bovine viral diarrhea virus (BVD virus) with its host has several unique features, most notably the capacity to infect its host either transiently or persistently. The transient infection stimulates an antiviral immune reaction similar to that seen in other transient viral infections. In contrast, being associated with immunotolerance specific for the infecting BVD viral strain, the persistent infection differs fundamentally from other persistent infections like those caused by lentiviruses. Whereas the latter are characterized by complex viral evasion of the host's adaptive immune response by mechanisms such as antigenic drift and interference with presentation of T cell epitopes, BVD virus avoids the immune response altogether by inducing both humoral and cellular immune tolerance. This is made possible by invasion of the fetus at an early stage of development. In addition to adaptive immunity, BVD virus also manipulates key elements of the host's innate immune response. The non-cytopathic biotype of BVD virus, which is capable of persistently infecting its host, fails to induce type I interferon. In addition, persistently infected cells are resistant to the induction of apoptosis by double-stranded RNA and do not produce interferon when treated with this pathogen-associated molecular pattern (PAMP) that signals viral infection. Moreover, when treated with interferon, cells persistently infected with non-cytopathic BVD virus do not clear the virus. Surprisingly, however, despite this lack of effect on persistent infection, interferon readily induces an antiviral state in these cells, as shown by the protection against infection by unrelated viruses. Overall, BVD virus manipulates the host's interferon defense in a manner that optimises its chances of maintaining the persistent infection as well as decreasing the risks that heterologous viral infections may carry for the host. Thus, since not all potential host cells are infected in animals persistently infected with BVD virus, heterologous viruses replicating in cells uninfected with BVD virus will still trigger production of interferon. Interferon produced by such cells will curtail the replication of heterologous viruses only, be that in cells already infected with BVD virus, or in cells in which the heterologous virus may replicate alone. From an evolutionary viewpoint, this strategy clearly enhances the chances of transmission of BVD virus to new hosts, as it attenuates the negative effects that a global immunosuppression would have on the survival of persistently infected animals.
Resumo:
Timing divergence events allow us to infer the conditions under which biodiversity has evolved and gain important insights into the mechanisms driving evolution. Cichlid fishes are a model system for studying speciation and adaptive radiation, yet, we have lacked reliable timescales for their evolution. Phylogenetic reconstructions are consistent with cichlid origins prior to Gondwanan landmass fragmentation 121-165 MYA, considerably earlier than the first known fossil cichlids (Eocene). We examined the timing of cichlid evolution using a relaxed molecular clock calibrated with geological estimates for the ages of 1) Gondwanan fragmentation and 2) cichlid fossils. Timescales of cichlid evolution derived from fossil-dated phylogenies of other bony fishes most closely matched those suggested by Gondwanan breakup calibrations, suggesting the Eocene origins and marine dispersal implied by the cichlid fossil record may be due to its incompleteness. Using Gondwanan calibrations, we found accumulation of genetic diversity within the radiating lineages of the African Lakes Malawi, Victoria and Barombi Mbo, and Palaeolake Makgadikgadi began around or after the time of lake basin formation. These calibrations also suggest Lake Tanganyika was colonized independently by the major radiating cichlid tribes that then began to accumulate genetic diversity thereafter. These results contrast with the widely accepted theory that diversification into major lineages took place within the Tanganyika basin. Together, this evidence suggests that ancient lake habitats have played a key role in generating and maintaining diversity within radiating lineages and also that lakes may have captured preexisting cichlid diversity from multiple sources from which adaptive radiations have evolved.
Resumo:
The immune system faces a considerable challenge in its efforts to maintain tissue homeostasis in the intestinal mucosa. It is constantly confronted with a large array of antigens, and has to prevent the dissemination and proliferation of potentially harmful agents while sparing the vital structures of the intestine from immune-mediated destruction. Complex interactions between the highly adapted effector cells and mechanisms of the innate and adaptive immune system generally prevent the luminal microflora from penetrating the intestinal mucosa and from spreading systemically. Non-haematopoietic cells critically contribute to the maintenance of local tissue homeostasis in an antigen-rich environment by producing protective factors (e.g. production of mucus by goblet cells, or secretion of microbicidal defensins by Paneth cells) and also through interactions with the adaptive and innate immune system (such as the production of chemotactic factors that lead to the selective recruitment of immune cell subsets). The complexity of the regulatory mechanisms that control the local immune response to luminal antigens is also reflected in the observation that mutations in immunologically relevant genes often lead to the development of uncontrolled inflammatory reactions in the microbially colonized intestine of experimental animals.