8 resultados para Adaptabilidade de carreira
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Epoxyisoprostanes EI (1) and EC (2) are effective inhibitors of the secretion of proinflammatory cytokines IL-6 and IL-12. In detailed studies toward the investigation of the molecular mode of action of these structures, a highly potent lactone (3) derived from 1 was identified. The known isoprostanoids 1 and 2 are most likely precursors of 3, the product of facile intramolecular reaction between the epoxide with the carboxylic acid in 2.
Resumo:
Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.
Resumo:
Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.
Resumo:
An efficient synthesis of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, 1) is reported. The route described allows for diversification of the parent structure to prepare seven analogues of 1 in which the positioning of electrophilic sites is varied. These analogues were tested in SAR studies for their ability to reduce the secretion of proinflammatory cytokines. It was shown that the endocyclic enone is crucial for the bioactivity investigated and that the conjugated ω-side chain serves in a reinforcing manner.
Resumo:
OBJECTIVES To longitudinally map the onset and identify risk factors for skin sclerosis and digital ulcers (DUs) in patients with systemic sclerosis (SSc) from an early time point after the onset of Raynaud's phenomenon (RP) in the European Scleroderma Trials and Research (EUSTAR) cohort. METHODS 695 patients with SSc with a baseline visit within 1 year after RP onset were followed in the prospective multinational EUSTAR database. During the 10-year observation period, cumulative probabilities of cutaneous lesions were assessed with the Kaplan-Meier method. Cox proportional hazards regression analysis was used to evaluate risk factors. RESULTS The median modified Rodnan skin score (mRSS) peaked 1 year after RP onset, and was 15 points. The 1-year probability to develop an mRSS ≥2 in at least one area of the arms and legs was 69% and 25%, respectively. Twenty-five per cent of patients developed diffuse cutaneous involvement in the first year after RP onset. This probability increased to 36% during the subsequent 2 years. Only 6% of patients developed diffuse cutaneous SSc thereafter. The probability to develop DUs increased to a maximum of 70% at the end of the 10-year observation. The main factors associated with diffuse cutaneous SSc were the presence of anti-RNA polymerase III autoantibodies, followed by antitopoisomerase autoantibodies and male sex. The main factor associated with incident DUs was the presence of antitopoisomerase autoantibodies. CONCLUSION Early after RP onset, cutaneous manifestations exhibit rapid kinetics in SSc. This should be accounted for in clinical trials aiming to prevent skin worsening.