10 resultados para Acyclic glycerol dialkyl glycerol tetraether flux
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Bacterial meningitis in children causes high rates of mortality and morbidity. In a recent clinical trial, oral glycerol significantly reduced severe neurological sequelae in paediatric meningitis caused by Haemophilus influenzae type b, and a tendency towards a benefit of adjunctive glycerol was seen in pneumococcal meningitis.
Resumo:
OBJECT: Glycerol is considered to be a marker of cell membrane degradation and thus cellular lysis. Recently, it has become feasible to measure via microdialysis cerebral extracellular fluid (ECF) glycerol concentrations at the patient's bedside. Therefore the aim of this study was to investigate the ECF concentration and time course of glycerol after severe traumatic brain injury (TBI) and its relationship to patient outcome and other monitoring parameters. METHODS: As soon as possible after injury for up to 4 days, 76 severely head-injured patients were monitored using a microdialysis probe (cerebral glycerol) and a Neurotrend sensor (brain tissue PO2) in uninjured brain tissue confirmed by computerized tomography scanning. The mean brain tissue glycerol concentration in all monitored patients decreased significantly from 206 +/- 31 micromol/L on Day 1 to 9 +/- 3 micromol/L on Day 4 after injury (p < 0.0001). Note, however, that there was no significant difference in the time course between patients with a favorable outcome (Glasgow Outcome Scale [GOS] Scores 4 and 5) and those with an unfavorable outcome (GOS Scores 1-3). Significantly increased glycerol concentrations were observed when brain tissue PO2 was less than 10 mm Hg or when cerebral perfusion pressure was less than 70 mm Hg. CONCLUSIONS: Based on results in the present study one can infer that microdialysate glycerol is a marker of severe tissue damage, as seen immediately after brain injury or during profound tissue hypoxia. Given that brain tissue glycerol levels do not yet add new clinically significant information, however, routine monitoring of this parameter following traumatic brain injury needs further validation.
Resumo:
Glycerol is one of the few carbon sources that can be utilized by Mycoplasma pneumoniae. Glycerol metabolism involves uptake by facilitated diffusion, phosphorylation, and the oxidation of glycerol 3-phosphate to dihydroxyacetone phosphate, a glycolytic intermediate. We have analyzed the expression of the genes involved in glycerol metabolism and observed constitutive expression irrespective of the presence of glycerol or preferred carbon sources. Similarly, the enzymatic activity of glycerol kinase is not modulated by HPr-dependent phosphorylation. This lack of regulation is unique among the bacteria for which glycerol metabolism has been studied so far. Two types of enzymes catalyze the oxidation of glycerol 3-phosphate: oxidases and dehydrogenases. Here, we demonstrate that the enzyme encoded by the M. pneumoniae glpD gene is a glycerol 3-phosphate oxidase that forms hydrogen peroxide rather than NADH(2). The formation of hydrogen peroxide by GlpD is crucial for cytotoxic effects of M. pneumoniae. A glpD mutant exhibited a significantly reduced formation of hydrogen peroxide and a severely reduced cytotoxicity. Attempts to isolate mutants affected in the genes of glycerol metabolism revealed that only the glpD gene, encoding the glycerol 3-phosphate oxidase, is dispensable. In contrast, the glpF and glpK genes, encoding the glycerol facilitator and the glycerol kinase, respectively, are essential in M. pneumoniae. Thus, the enzymes of glycerol metabolism are crucial for the pathogenicity of M. pneumoniae but also for other essential, yet-to-be-identified functions in the M. pneumoniae cell.
Resumo:
NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.
Resumo:
The membrane-associated enzyme L-α-glycerol-3-phosphate oxidase (GlpO) of Mycoplasma mycoides subs. mycoides (Mmm), the causal agent of contagious bovine pleuropneumonia (CBPP) has been identified as a virulence factor responsible for the release of toxic by-products such as H2O2 that mediate host cell injury. Since CBPP pathogenesis is based on host inflammatory reactions, we have determined the capacity of recombinant GlpO to generate in vivo protective responses against challenge in immunized cattle. We also investigated whether sera raised against recombinant GlpO in cattle and mice inhibit production of H2O2 by Mmm. Immunization of cattle with recombinant GlpO did not protect against challenge with a virulent strain of Mmm. Further, although both murine and bovine antisera raised against recombinant GlpO detected recombinant and native forms of GlpO in immunoblot assays with similar titres, only murine antibodies could neutralize GlpO enzymatic function. The data raise the possibility that Mmm has adapted to evade potential detrimental antibody responses in its definitive host.
Resumo:
BACKGROUND AND PURPOSE 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.
Resumo:
A novel proxy for continental mean annual air temperature (MAAT) and soil pH, the MBT/CBT-paleothermometer, is based on the temperature (T) and pH-dependent distribution of specific bacterial membrane lipids (branched glycerol dialkyl glycerol tetraethers – GDGTs) in soil organic matter. Here, we tested the applicability of the MBT/CBT-paleothermometer to sediments from Lake Cadagno, a high Alpine lake in southern Switzerland with a small catchment of 2.4 km2. We analysed the distribution of bacterial GDGTs in catchment soils and in a radiocarbon-dated sediment core from the centre of the lake, covering the past 11 000 yr. The distribution of bacterial GDGTs in the catchment soils is very similar to that in the lake's surface sediments, indicating a common origin of the lipids. Consequently, their transfer from the soils into the sediment record seems undisturbed, probably without any significant alteration of their distribution through in situ production in the lake itself or early diagenesis of branched GDGTs. The MBT/CBT-inferred MAAT estimates from soils and surface sediments are in good agreement with instrumental values for the Lake Cadagno region (~0.5 °C). Moreover, downcore MBT/CBT-derived MAAT estimates match in timing and magnitude other proxy-based T reconstructions from nearby locations for the last two millennia. Major climate anomalies recorded by the MBT/CBT-paleothermometer are, for instance, the Little Ice Age (~14th to 19th century) and the Medieval Warm Period (MWP, ~9th to 14th century). Together, our observations indicate the quantitative applicability of the MBT/CBT-paleothermometer to Lake Cadagno sediments. In addition to the MWP, our lacustrine paleo T record indicates Holocene warm phases at about 3, 5, 7 and 11 kyr before present, which agrees in timing with other records from both the Alps and the sub-polar North-East Atlantic Ocean. The good temporal match of the warm periods determined for the central Alpine region with north-west European winter precipitation strength implies a strong and far-reaching influence of the North Atlantic Oscillation on continental European T variations during the Holocene.