7 resultados para AUTONOMIC FUNCTION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The link between decreased heart rate variability (HRV) and atherosclerosis progression is elusive. We hypothesized that reduced HRV relates to increased levels of prothrombotic factors previously shown to predict coronary risk. METHODS: We studied 257 women (aged 56 +/- 7 years) between 3 and 6 months after an acute coronary event and obtained very low frequency (VLF), low frequency (LF), and high frequency (HF) power, and LF/HF ratio from 24-hour ambulatory ECG recordings. Plasma levels of activated clotting factor VII (FVIIa), fibrinogen, von Willebrand factor antigen (VWF:Ag), and plasminogen activator inhibitor-1 (PAI-1) activity were determined, and their levels were aggregated into a standardized composite index of prothrombotic activity. RESULTS: In bivariate analyses, all HRV indices were inversely correlated with the prothrombotic index explaining between 6% and 14% of the variance (p < 0.001). After controlling for sociodemographic factors, index event, menopausal status, cardiac medication, lifestyle factors, self-rated health, metabolic variables, and heart rate, VLF power, LF power, and HF power explained 2%, 5%, and 3%, respectively, of the variance in the prothrombotic index (p < 0.012). There were also independent relationships between VLF power and PAI-1 activity, between LF power and fibrinogen, VWF:Ag, and PAI-1 activity, between HF power and FVIIa and fibrinogen, and between the LF/HF power ratio and PAI-1 activity, explaining between 2% and 3% of the respective variances (p < 0.05). CONCLUSIONS: Decreased HRV was associated with prothrombotic changes partially independent of covariates. Alteration in autonomic function might contribute to prothrombotic activity in women with coronary artery disease (CAD).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To investigate whether body sodium content and blood volume contribute to the pathogenesis of orthostatic hypotension in patients with diabetes mellitus. SUBJECTS AND METHODS: Exchangeable sodium, plasma and blood volumes, and catecholamine, renin, and aldosterone levels were assessed in 10 patients with Type II diabetes mellitus who had orthostatic hypotension and control groups of 40 diabetic patients without orthostatic hypotension and 40 normal subjects of similar age and sex. In subgroups, clinical tests of autonomic function and cardiovascular reactivity to norepinephrine and angiotensin II infusions were performed. RESULTS: In diabetic patients with orthostatic hypotension, mean (+/- SD) supine blood pressure was 165/98 +/- 27/12 mm Hg (P <0.05 compared with other groups) and mean upright blood pressure was 90/60 +/- 38/18 mm Hg. Compared with controls, diabetic patients with orthostatic hypotension had a 10% lower blood volume. They also had less exchangeable sodium than patients with diabetes who did not have orthostatic hypotension (P <0.01). Compared with both groups of controls, diabetic patients with orthostatic hypotension had decreased 24-hour urinary norepinephrine excretion and a reduced diastolic blood pressure response to handgrip (P <0.05). Moreover, they displayed reduced products of exchangeable sodium or blood volume and sympathetic function indexes. Cardiovascular pressor reactivity to norepinephrine was enhanced (P <0.01) and beat-to-beat variation decreased (P <0.01) in both groups of diabetic patients. Microvascular complications were more prevalent in the diabetic patients with orthostatic hypotension (90% vs 35%). CONCLUSIONS: Patients who have Type II diabetes mellitus and orthostatic hypotension are hypovolemic and have sympathoadrenal insufficiency; both factors contribute to the pathogenesis of orthostatic hypotension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Veteran endurance athletes have an increased risk of developing atrial fibrillation (AF), with a striking male predominance. We hypothesized that male athletes were more prone to atrial and ventricular remodeling and investigated the signal-averaged P wave and factors that promote the occurrence of AF. Nonelite athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Of the 873 marathon and nonmarathon runners who were willing to participate, 68 female and 70 male athletes were randomly selected. The runners with cardiovascular disease or elevated blood pressure (>140/90 mm Hg) were excluded. Thus, 121 athletes were entered into the final analysis. Their mean age was 42 ± 7 years. No gender differences were found for age, lifetime training hours, or race time. The male athletes had a significantly longer signal-averaged P-wave duration (136 ± 12 vs 122 ± 10 ms; p <0.001). The left atrial volume was larger in the male athletes (56 ± 13 vs 49 ± 10 ml; p = 0.001), while left atrial volume index showed no differences (29 ± 7 vs 30 ± 6 ml/m²; p = 0.332). In male athletes, the left ventricular mass index (107 ± 17 vs 86 ± 16 g/m²; p <0.001) and relative wall thickness (0.44 ± 0.06 vs 0.41 ± 0.07; p = 0.004) were greater. No differences were found in the left ventricular ejection fraction (63 ± 4% vs 66 ± 6%; p = 0.112) and mitral annular tissue Doppler e' velocity (10.9 ± 1.5 vs 10.6 ± 1.5 cm/s; p = 0.187). However, the tissue Doppler a' velocity was higher (8.7 ± 1.2 vs 7.6 ± 1.3 cm/s; p < 0.001) in the male athletes. Male athletes had a higher systolic blood pressure at rest (123 ± 9 vs 110 ± 11 mm Hg; p < 0.001) and at peak exercise (180 ± 15 vs 169 ± 19 mm Hg; p = 0.001). In the frequency domain analysis of heart rate variability, the sympatho-vagal balance, represented by the low/high-frequency power ratio, was significantly greater in male athletes (5.8 ± 2.8 vs 3.9 ± 1.9; p < 0.001). Four athletes (3.3%) had at least one documented episode of paroxysmal AF, all were men (p = 0.042). In conclusion, for a comparable amount of training and performance, male athletes showed a more pronounced atrial remodeling, a concentric type of ventricular remodeling, and an altered diastolic function. A higher blood pressure at rest and during exercise and a higher sympathetic tone might be causal. The altered left atrial substrate might facilitate the occurrence of AF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endurance athletes have an increased risk of developing atrial fibrillation (AF) at 40 to 50 years of age. Signal-averaged P-wave analysis has been used for identifying patients at risk for AF. We evaluated the impact of lifetime training hours on signal-averaged P-wave duration and modifying factors. Nonelite men athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Four hundred ninety-two marathon and nonmarathon runners applied for participation, 70 were randomly selected, and 60 entered the final analysis. Subjects were stratified according to their lifetime training hours (average endurance and strength training hours per week × 52 × training years) in low (<1,500 hours), medium (1,500 to 4,500 hours), and high (>4,500 hours) training groups. Mean age was 42 ± 7 years. From low to high training groups signal-averaged P-wave duration increased from 131 ± 6 to 142 ± 13 ms (p = 0.026), and left atrial volume increased from 24.8 ± 4.6 to 33.1 ± 6.2 ml/m(2) (p = 0.001). Parasympathetic tone expressed as root of the mean squared differences of successive normal-to-normal intervals increased from 34 ± 13 to 47 ± 16 ms (p = 0.002), and premature atrial contractions increased from 6.1 ± 7.4 to 10.8 ± 7.7 per 24 hours (p = 0.026). Left ventricular mass increased from 100.7 ± 9.0 to 117.1 ± 18.2 g/m(2) (p = 0.002). Left ventricular systolic and diastolic function and blood pressure at rest were normal in all athletes and showed no differences among training groups. Four athletes (6.7%) had a history of paroxysmal AF, as did 1 athlete in the medium training group and 3 athletes in the high training group (p = 0.252). In conclusion, in nonelite men athletes lifetime training hours are associated with prolongation of signal-averaged P-wave duration and an increase in left atrial volume. The altered left atrial substrate may facilitate occurrence of AF. Increased vagal tone and atrial ectopy may serve as modifying and triggering factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Recent progress in neuroscience revealed diverse regions of the CNS which moderate autonomic and affective responses. The ventro-medial prefrontal cortex (vmPFC) plays a key role in these regulations. There is evidence that vmPFC activity is associated with cardiovascular changes during a motor task that are mediated by parasympathetic activity. Moreover, vmPFC activity makes important contributions to regulations of affective and stressful situations.This review selectively summarizes literature in which vmPFC activation was studied in healthy subjects as well as in patients with affective disorders. The reviewed literature suggests that vmPFC activity plays a pivotal role in biopsychosocial processes of disease. Activity in the vmPFC might link affective disorders, stressful environmental conditions, and immune function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the neural mechanisms and the autonomic and cognitive responses associated with visual avoidance behavior in spider phobia. Spider phobic and control participants imagined visiting different forest locations with the possibility of encountering spiders, snakes, or birds (neutral reference category). In each experimental trial, participants saw a picture of a forest location followed by a picture of a spider, snake, or bird, and then rated their personal risk of encountering these animals in this context, as well as their fear. The greater the visual avoidance of spiders that a phobic participant demonstrated (as measured by eye tracking), the higher were her autonomic arousal and neural activity in the amygdala, orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and precuneus at picture onset. Visual avoidance of spiders in phobics also went hand in hand with subsequently reduced cognitive risk of encounters. Control participants, in contrast, displayed a positive relationship between gaze duration toward spiders, on the one hand, and autonomic responding, as well as OFC, ACC, and precuneus activity, on the other hand. In addition, they showed reduced encounter risk estimates when they looked longer at the animal pictures. Our data are consistent with the idea that one reason for phobics to avoid phobic information may be grounded in heightened activity in the fear circuit, which signals potential threat. Because of the absence of alternative efficient regulation strategies, visual avoidance may then function to down-regulate cognitive risk evaluations for threatening information about the phobic stimuli. Control participants, in contrast, may be characterized by a different coping style, whereby paying visual attention to potentially threatening information may help them to actively down-regulate cognitive evaluations of risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM The autonomic innervation of the heart consists of sympathetic and parasympathetic nerve fibres, and fibres of the intrinsic ganglionated plexus with noradrenaline and acytylcholine as principal neurotransmitters. The fibres co-release neuropeptides to modulate intracardiac neurotransmission by specific presynaptic and postsynaptic receptors. The coexpression of angiotensin II in sympathetic fibres of the human heart and its role are not known so far. METHODS Autopsy specimens of human hearts were studied (n=3; ventricles). Using immunocytological methods, cryostat sections were stained by a murine monoclonal antibody (4B3) directed against angiotensin II and co-stained by polyclonal antibodies against tyrosine hydroxylase, a catecholaminergic marker. Visualisation of the antibodies was by confocal light microscopy or laser scanning microscopy. RESULTS Angiotensin II-positive autonomic fibres with and without a catecholaminergic cophenotype (hydroxylase-positive) were found in all parts of the human ventricles. In the epicardium, the fibres were grouped in larger bundles of up to 100 and more fibres. They followed the preformed anatomic septa and epicardial vessels towards the myocardium and endocardium where the bundles dissolved and the individual fibres spread between myocytes and within the endocardium. Generally, angiotensinergic fibres showed no synaptic enlargements or only a few if they were also catecholaminergic. The exclusively catechalominergic fibres were characterised by multiple beaded synapses. CONCLUSION The autonomic innervation of the human heart contains angiotensinergic fibres with a sympathetic efferent phenotype and exclusively angiotensinergic fibers representing probably afferents. Angiotensinergic neurotransmission may modulate intracardiac sympathetic and parasympathetic activity and thereby influence cardiac and circulatory function.