9 resultados para ALPHA-AMYLASE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Mental stress reliably induces increases in salivary alpha amylase (sAA), a suggested surrogate marker for sympathetic nervous system (SNS) reactivity. While stress-induced sAA increases correlate with norepinephrine (NE) secretion, a potential mediating role of noradrenergic mechanisms remains unclear. In this study, we investigated for the first time in humans whether a NE-stress-reactivity mimicking NE-infusion with and without alpha-adrenergic blockade by phentolamine would induce changes in sAA. METHODS: In a single-blind placebo-controlled within-subjects design, 21 healthy men (29-66 years) took part in three different experimental trials varying in terms of substance infusion with a 1-min first infusion followed by a 15-min second infusion: saline-infusion (trial-1), NE-infusion (5 μg/min) without alpha-adrenergic blockade (trial-2), and with phentolamine-induced non-selective blockade of alpha1- and alpha2-adrenergic receptors (trial-3). Saliva samples were collected immediately before, during, and several times after substance infusion in addition to blood pressure and heart rate readings. RESULTS: Experimental trials significantly differed in sAA reactivity to substance-infusion (p=.001) with higher sAA reactivity following NE-infusion with (trial-3; p=.001) and without alpha-adrenergic-blockade (trial-2; p=.004) as compared to placebo-infusion (trial-1); sAA infusion reactivity did not differ between trial-2 and trial-3 (p=.29). Effective phentolamine application was verified by blood pressure and heart rate infusion reactivity. Salivary cortisol was not affected by NE, either with or without alpha-adrenergic-blockade. CONCLUSIONS: We found that NE-infusion stimulates sAA secretion, regardless of co-administered non-selective alpha-adrenergic blockade by phentolamine, suggesting that the mechanism underlying stress-induced sAA increases may involve NE.
Resumo:
Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two maltase activities were associated with sucrase-isomaltase. Two remaining maltases, lacking other identifying activities, were named maltase-glucoamylase. These 4 activities are better described as alpha-glucosidases because they digest all linear starch oligosaccharides to glucose. Because confusion persists about the relative roles of these 6 enzymes, we ablated maltase-glucoamylase gene expression by homologous recombination in Sv/129 mice. We assayed the alpha-glucogenic activities of the jejunal mucosa with and without added recombinant pancreatic alpha-amylase, using a range of food starch substrates. Compared with wild-type mucosa, null mucosa or alpha-amylase alone had little alpha-glucogenic activity. alpha-Amylase amplified wild-type and null mucosal alpha-glucogenesis. alpha-Amylase amplification was most potent against amylose and model resistant starches but was inactive against its final product limit-dextrin and its constituent glucosides. Both sucrase-isomaltase and maltase-glucoamylase were active with limit-dextrin substrate. These mucosal assays were corroborated by a 13C-limit-dextrin breath test. In conclusion, the global effect of maltase-glucoamylase ablation was a slowing of rates of mucosal alpha-glucogenesis. Maltase-glucoamylase determined rates of digestion of starch in normal mice and alpha-amylase served as an amplifier for mucosal starch digestion. Acarbose inhibition was most potent against maltase-glucoamylase activities of the wild-type mouse. The consortium of 6 interactive enzymes appears to be a mechanism for adaptation of alpha-glucogenesis to a wide range of food starches.
Resumo:
The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva.
Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)
Resumo:
Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal subunit enzyme of human small intestinal maltase-glucoamylase (rhMGAM-N) was used to explore digestion of native starches from different botanical sources. The susceptibilities to enzyme hydrolysis varied among the starches. The rate and extent of hydrolysis of amylomaize-5 and amylomaize-7 into glucose were greater than for other starches. Such was not observed with fungal amyloglucosidase or pancreatic alpha-amylase. The degradation of native starch granules showed a surface furrowed pattern in random, radial, or tree-like arrangements that differed substantially from the erosion patterns of amyloglucosidase or alpha-amylase. The evidence of raw starch granule degradation with rhMGAM-N indicates that pancreatic alpha-amylase hydrolysis is not a requirement for native starch digestion in the human small intestine.
Resumo:
BACKGROUND: Starches are the major source of dietary glucose in weaned children and adults. However, small intestine alpha-glucogenesis by starch digestion is poorly understood due to substrate structural and chemical complexity, as well as the multiplicity of participating enzymes. Our objective was dissection of luminal and mucosal alpha-glucosidase activities participating in digestion of the soluble starch product maltodextrin (MDx). PATIENTS AND METHODS: Immunoprecipitated assays were performed on biopsy specimens and isolated enterocytes with MDx substrate. RESULTS: Mucosal sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) contributed 85% of total in vitro alpha-glucogenesis. Recombinant human pancreatic alpha-amylase alone contributed <15% of in vitro alpha-glucogenesis; however, alpha-amylase strongly amplified the mucosal alpha-glucogenic activities by preprocessing of starch to short glucose oligomer substrates. At low glucose oligomer concentrations, MGAM was 10 times more active than SI, but at higher concentrations it experienced substrate inhibition whereas SI was not affected. The in vitro results indicated that MGAM activity is inhibited by alpha-amylase digested starch product "brake" and contributes only 20% of mucosal alpha-glucogenic activity. SI contributes most of the alpha-glucogenic activity at higher oligomer substrate concentrations. CONCLUSIONS: MGAM primes and SI activity sustains and constrains prandial alpha-glucogenesis from starch oligomers at approximately 5% of the uninhibited rate. This coupled mucosal mechanism may contribute to highly efficient glucogenesis from low-starch diets and play a role in meeting the high requirement for glucose during children's brain maturation. The brake could play a constraining role on rates of glucose production from higher-starch diets consumed by an older population at risk for degenerative metabolic disorders.
Resumo:
Aim: Increased rates of hospitalization due to cardiovascular events have been reported during phases of World Soccer Championships (WSC). The purpose of this pilot study was to explore acute psychological and physiological effects of watching a live broadcast soccer game during the WSC 2006. Methods: Seven male supporters (age: M=24; SD=2.7) of the Swiss National Soccer Team watched a game of their team in a controlled laboratory setting. Heart rate (HR), heart rate variability (HRV), salivary cortisol, alpha-amylase (sAA), and testosterone concentrations, as well as several mood ratings were captured repeatedly before, during, and after the game. Results: Subjects reported feeling stressed, and HR and sAA activity showed an increase during the game. In contrast, HRV, cortisol and testosterone were unaffected. Conclusion: Watching a sports competition seems to specifically affect the sympathetic nervous system, which can be measured by sensitive electrocardiographic and salivary markers.
Resumo:
Theoretical background and objectives: Stress reducing effects of Taiji practice have been repeatedly reported. The aim of the present study was to investigate which persons benefit the most from Taiji practice in terms of reduced physiological stress reactivity. Methods: We conducted a secondary data analysis of a randomized controlled Taiji trial that significantly lowered stress reactivity of salivary cortisol and alpha-amylase in a Taiji group (n = 26) compared to a control group (n = 23). By using hierarchical regression analyses potential moderating influences of self-reported trait-mindfulness and trait values of general psychological stress reactivity on stress protective effects of a three months Taiji training were examined. Moderator variables were assessed at the beginning of the study using the Freiburg-Mindfulness-Inventory and the Perceived- Stress-Reactivity-Scale. Results: The interaction effect "study group x mindfulness" was significant for stress reactivity of salivary alpha-amylase (p = 0.050). Participants in the Taiji group with higher trait-mindfulness showed a lower salivary alpha-amylase stress reactivity, while in the control group higher trait-mindfulness was associated with higher alpha-amylase stress reactivity. In the control group (p = 0.042) but not in the Taiji group (p = 0.69) salivary cortisol stress reactivity was significantly increased in persons with higher trait-mindfulness scores. We could not find moderating effects of general psychological stress reactivity. Conclusion: Our results suggest that without intervention higher trait-mindfulness is associated with increased physiological stress reactivity. Persons with higher trait-mindfulness seem to benefit the most from practicing Taiji in terms of reduced sympathetic stress reactivity.
Resumo:
The stress of dental treatment often elicits negative emotions in children, expressed as dental fear or anxiety. Highly anxious children obstruct treatment and avoid therapy, further amplifying oral health problems. The aim of this study was to examine the neuroendocrine and autonomic nervous system responses to dental treatment and their possible interactions and associations with psychometric indices of anxiety, caries, previous dental experience, anesthesia, age and gender in school children. Upon informed consent, saliva was obtained from 97 children (59% males, mean age ± SD: 89.73 ± 15 months) in the Clinic of pediatric dentistry before treatment, immediately post-treatment and at the recall visit to determine cortisol and salivary alpha-amylase (sAA) levels. Dental and general anxiety was assessed through specific questionnaires completed by the children. Compared to pre-treatment, cortisol levels were increased following treatment, while sAA levels were higher at the recall. Pre- and post-treatment cortisol and sAA responses were positively correlated. Dental and general anxiety questionnaire scores were also significantly correlated with each other. The integrated autonomic and neuroendocrine responses prior to treatment were correlated with state anxiety and those following treatment with dental anxiety. However, univariable and multivariable linear regression analysis associated post-treatment cortisol, but not sAA, levels with dental anxiety. No associations of cortisol or sAA responses with caries, age, gender, previous dental experience or anesthesia were detected. These data provide some evidence that both sAA and cortisol levels are altered in children in anticipation or during dental treatment, but only cortisol levels are associated to dental anxiety.
Resumo:
Empathy is a core prerequisite for human social behavior. Relatively, little is known about how empathy is influenced by social stress and its associated neuroendocrine alterations. The current study was designed to test the impact of acute stress on emotional and cognitive empathy. Healthy male participants were exposed to a psychosocial laboratory stressor (trier social stress test, (TSST)) or a well-matched control condition (Placebo-TSST). Afterwards they participated in an empathy test measuring emotional and cognitive empathy (multifaceted empathy test, (MET)). Stress exposure caused an increase in negative affect, a rise in salivary alpha amylase and a rise in cortisol. Participants exposed to stress reported more emotional empathy in response to pictures displaying both positive and negative emotional social scenes. Cognitive empathy (emotion recognition) in contrast did not differ between the stress and the control group. The current findings provide initial evidence for enhanced emotional empathy after acute psychosocial stress.