26 resultados para 3D acquisitions registration
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
2D-3D registration of pre-operative 3D volumetric data with a series of calibrated and undistorted intra-operative 2D projection images has shown great potential in CT-based surgical navigation because it obviates the invasive procedure of the conventional registration methods. In this study, a recently introduced spline-based multi-resolution 2D-3D image registration algorithm has been adapted together with a novel least-squares normalized pattern intensity (LSNPI) similarity measure for image guided minimally invasive spine surgery. A phantom and a cadaver together with their respective ground truths were specially designed to experimentally assess possible factors that may affect the robustness, accuracy, or efficiency of the registration. Our experiments have shown that it is feasible for the assessed 2D-3D registration algorithm to achieve sub-millimeter accuracy in a realistic setup in less than one minute.
Resumo:
Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.
Resumo:
This paper addresses the problem of estimating postoperative cup alignment from single standard X-ray radiograph with gonadal shielding. The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior radiograph is known inaccurate, largely due to the wide variability in individual pelvic position relative to X-ray plate. 2D-3D image registration methods have been introduced to estimate the rigid transformation between a preoperative CT volume and postoperative radiograph(s) for an accurate estimation of the postoperative cup alignment relative to an anatomical reference extracted from the CT data. However, these methods require either multiple radiographs or a radiograph-specific calibration, both of which are not avaiable for most retrospective studies. Furthermore, these methods were only evaluated on X-ray radiograph(s) without gonadal shielding. In this paper, we propose to use a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration to estimate the rigid transfromation for a precise estimation of cup alignment. Quantitative and qualitative results evaluated on clinical and cadaveric datasets are given which indicate the validity of our approach.
Resumo:
This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.
Resumo:
This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.