28 resultados para 1.Tetrazolium salt
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
STUDY DESIGN: Ex vivo in vitro study evaluating a novel intervertebral disc/endplate culture system. OBJECTIVES: To establish a whole-organ intervertebral disc culture model for the study of disc degeneration in vitro, including the characterization of basic cell and organ function. SUMMARY OF BACKGROUND DATA: With current in vivo models for the study of disc and endplate degeneration, it remains difficult to investigate the complex disc metabolism and signaling cascades. In contrast, more controlled but simplified in vitro systems using isolated cells or disc fragments are difficult to culture due to the unconstrained conditions, with often-observed cell death or cell dedifferentiation. Therefore, there is a demand for a controlled culture model with preserved cell function that offers the possibility to investigate disc and endplate pathologies in a structurally intact organ. METHODS: Naturally constrained intervertebral disc/endplate units from rabbits were cultured in multi-well plates. Cell viability, metabolic activity, matrix composition, and matrix gene expression profile were monitored using the Live/Dead cell viability test (Invitrogen, Basel, Switzerland), tetrazolium salt reduction (WST-8), proteoglycan and deoxyribonucleic acid quantification assays, and quantitative polymerase chain reaction. RESULTS: Viability and organ integrity were preserved for at least 4 weeks, while proteoglycan and deoxyribonucleic acid content decreased slightly, and matrix genes exhibited a degenerative profile with up-regulation of type I collagen and suppression of collagen type II and aggrecan genes. Additionally, cell metabolic activity was reduced to one third of the initial value. CONCLUSIONS: Naturally constrained intervertebral rabbit discs could be cultured for several weeks without losing cell viability. Structural integrity and matrix composition were retained. However, the organ responded to the artificial environment with a degenerative gene expression pattern and decreased metabolic rate. Therefore, the described system serves as a promising in vitro model to study disc degeneration in a whole organ.
Resumo:
Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.
Resumo:
The dynamics of focusing weak bases using a transient pH boundary was examined via high-resolution computer simulation software. Emphasis was placed on the mechanism and impact that the presence of salt, namely, NaCl, has on the ability to focus weak bases. A series of weak bases with mobilities ranging from 5 x 10(-9) to 30 x 10(-9) m2/V x s and pKa values between 3.0 and 7.5 were examined using a combination of 65.6 mM formic acid, pH 2.85, for the separation electrolyte, and 65.6 mM formic acid, pH 8.60, for the sample matrix. Simulation data show that it is possible to focus weak bases with a pKa value similar to that of the separation electrolyte, but it is restricted to weak bases having an electrophoretic mobility of 20 x 10(-9) m2/V x s or quicker. This mobility range can be extended by the addition of NaCl, with 50 mM NaCl allowing stacking of weak bases down to a mobility of 15 x 10(-9) m2/V x s and 100 mM extending the range to 10 x 10(-9) m2/V x s. The addition of NaCl does not adversely influence focusing of more mobile bases, but does prolong the existence of the transient pH boundary. This allows analytes to migrate extensively through the capillary as a single focused band around the transient pH boundary until the boundary is dissipated. This reduces the length of capillary that is available for separation and, in extreme cases, causes multiple analytes to be detected as a single highly efficient peak.
Resumo:
BACKGROUND: The role of albumin on blood pressure response to different salt challenges is not known. Therefore, we studied the blood pressure response of analbuminemic Nagase rats (NAR) to different salt challenges. 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2), the enzyme regulating the glucocorticoid access to the mineralocorticoid receptor, an enzyme that is decreased in humans with salt sensitive hypertension and other diseases with abnormal renal salt retention, was assessed during salt challenges. METHODS: Blood pressure was measured continuously by an intra-arterial catheter and a telemetry system in NAR (n = 8). NAR were set successively for 7 days on a normal (0.45% NaCl), high (8% NaCl), low (0.1% NaCl) and normal salt diet again, to assess salt related response in mean systolic (SBP) and diastolic blood pressure (DBP). 11beta-HSD2activity was assessed by measuring the urinary (THB + 5alpha-THB)/THA ratio with gas chromatography - mass spectrometry. RESULTS: Mean SBP and DBP increased with high salt intake (normal salt vs. high salt: SBP: 114 +/- 1 vs.119 +/- 3 mm Hg, p < 0.01; DBP: 84 +/- 1 vs. 88 +/- 3 mm Hg; n = 8; p < 0.01). Urinary (THB +5alpha-THB)/THA ratio increased during the high-salt period when compared to the normal-salt period (high salt vs. normal salt: 0.52 +/- 0.10 vs. 0.37 +/- 0.07; p = 0.05) indicating decreased 11beta-HSD2activity. CONCLUSION: Analbuminemic Nagase rats express increased blood pressure and reduced 11beta-HSD2 activity in response to a high-salt diet.
Resumo:
Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.
Resumo:
Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity.
Resumo:
Compromised intrauterine fetal growth leading to low birth weight (<2500 g) is associated with adulthood renal and cardiovascular disease. The aim of this study was to assess the effect of salt intake on blood pressure (salt sensitivity) in children with low birth weight. White children (n=50; mean age: 11.3+/-2.1 years) born with low (n=35) or normal (n=15) birth weight and being either small or appropriate for gestational age (n=25 in each group) were investigated. The glomerular filtration rate was calculated using the Schwartz formula, and renal size was measured by ultrasound. Salt sensitivity was assigned if mean 24-hour blood pressure increased by >or=3 mm Hg on a high-salt diet as compared with a controlled-salt diet. Baseline office blood pressure was higher and glomerular filtration rate lower in children born with low birth weight as compared with children born at term with appropriate weight (P<0.05). Salt sensitivity was present in 37% and 47% of all of the low birth weight and small for gestational age children, respectively, higher even than healthy young adults from the same region. Kidney length and volume (both P<0.0001) were reduced in low birth weight children. Salt sensitivity inversely correlated with kidney length (r(2)=0.31; P=0.005) but not with glomerular filtration rate. We conclude that a reduced renal mass in growth-restricted children poses a risk for a lower renal function and for increased salt sensitivity. Whether the changes in renal growth are causative or are the consequence of the same abnormal "fetal programming" awaits clarification.
Resumo:
ABSTRACT: There is a high frequency of diarrhea and vomiting in childhood. As a consequence the focus of the present review is to recognize the different body fluid compartments, to clinically assess the degree of dehydration, to know how the equilibrium between extracellular fluid and intracellular fluid is maintained, to calculate the effective blood osmolality and discuss both parenteral fluid requirments and repair.
Resumo:
OBJECTIVE: Psychological states relate to changes in circulating immune cells, but associations with immune cells in peripheral tissues such as macrophages have hardly been investigated. Here, we aimed to implement and validate a method for measuring the microbicidal potential of ex vivo isolated human monocyte-derived macrophages (HMDMs) as an indicator of macrophage activation. METHODS: The method was implemented and validated for two blood sampling procedures (short-term cannula insertion versus long-term catheter insertion) in 79 participants (34 women, 45 men) aged between 18 and 75 years. The method principle is based on the reduction of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-dis-ulfophenyl)-2H-tetrazolium, monosodium salt (WST-1) by superoxide anions, the first in a series of pathogen-killing reactive oxygen species produced by phorbol myristate acetate-activated HMDM. Cytochrome c reduction and current generation were measured as reference methods for validation purposes. We further evaluated whether depressive symptom severity (Beck Depression Inventory) and chronic stress (Chronic Stress Screening Scale) were associated with macrophage microbicidal potential. RESULTS: The assay induced superoxide anion responses by HMDM in all participants. Assay results depended on blood sampling procedure (cannula versus catheter insertion). Interassay variability as a measure for assay reliability was 10.92% or less. WST-1 reduction scores correlated strongly with results obtained by reference methods (cytochrome c: r = 0.57, p = .026; current generation: r values ≥ 0.47, p values <.033) and with psychological factors (depressive symptom severity: r = 0.35 [cannula insertion] versus r = -0.54 [catheter insertion]; chronic stress: r = 0.36 [cannula insertion]; p values ≤ .047). CONCLUSIONS: Our findings suggest that the implemented in vitro method investigates microbicidal potential of HMDM in a manner that is valid and sensitive to psychological measures.
Resumo:
Electrolyte disorders are common and potentially fatal laboratory findings in emergency patients. Approximately 20 % of patients in the emergency department present with either hyponatremia or hypernatremia. Recently it was shown that disorders of serum sodium are not only an expression of the severity of the underlying disease but independent predictors for the outcome of patients. They directly influence patient daily life by causing not only gait and concentration disturbances but also an increased tendency to fall together with a reduced bone mass. Given these new data it is even more important to detect and adequately correct dysnatremia in patients in the emergency department. Acute, symptomatic dysnatremia should be corrected promptly by use of 3 % NaCl for hyponatremia and 5 % glucose for hypernatremia. A close monitoring of serum sodium concentration is, however, essential in any case of correction of hyponatremia or hypernatremia in order to avoid rapid overcorrection and subsequent complications. A profound knowledge of the mechanisms underlying the development of hyponatremia, e.g. diuretics, syndrome of inappropriate antidiuretic hormone secretion (SIADH), heart failure and cirrhosis of the liver and hypernatremia, e.g. dehydration, infusions, diuretics and osmotic diuresis is essential. The present article describes the epidemiology, etiology and correction of hyponatremia and hypernatremia on the basis of current knowledge with special emphasis on emergency department patients.