5 resultados para 010405 Statistical Theory

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ2-distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the econometrics literature has shown a growing interest in the study of partially identified models, in which the object of economic and statistical interest is a set rather than a point. The characterization of this set and the development of consistent estimators and inference procedures for it with desirable properties are the main goals of partial identification analysis. This review introduces the fundamental tools of the theory of random sets, which brings together elements of topology, convex geometry, and probability theory to develop a coherent mathematical framework to analyze random elements whose realizations are sets. It then elucidates how these tools have been fruitfully applied in econometrics to reach the goals of partial identification analysis.