132 resultados para 3D-annotaatio
Resumo:
Reconstruction of shape and intensity from 2D x-ray images has drawn more and more attentions. Previously introduced work suffers from the long computing time due to its iterative optimization characteristics and the requirement of generating digitally reconstructed radiographs within each iteration. In this paper, we propose a novel method which uses a patient-specific 3D surface model reconstructed from 2D x-ray images as a surrogate to get a patient-specific volumetric intensity reconstruction via partial least squares regression. No DRR generation is needed. The method was validated on 20 cadaveric proximal femurs by performing a leave-one-out study. Qualitative and quantitative results demonstrated the efficacy of the present method. Compared to the existing work, the present method has the advantage of much shorter computing time and can be applied to both DXA images as well as conventional x-ray images, which may hold the potentials to be applied to clinical routine task such as total hip arthroplasty (THA).
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Resumo:
Purpose: Congenital uterine anomalies often remain asymptomatic until they cause problems, for example during pregnancy. We studied the diagnostic aspects of two- and three-dimensional ultrasound and MRI. Materials and Methods: 63 women referred for suspected uterine anomalies were studied: In the first group (until July 2008) with 2 D-US and MRI, in the second group (from August 2008) additionally with 3 D-US; these women also had diagnostic or therapeutic operative confirmation. In the third group, only 3D-US was used. Results: In all women 3D-US was possible and successful. The most common anomaly was a subseptate uterus, while a septate uterus was less frequent, and uterus bicornis (unicollis) and uterus didelphys (bicornis bicollis) were rare. The women in the first two groups all underwent at least diagnostic hysteroscopy, and some (subseptate or septate uterus) underwent operative hysteroscopy. After preoperative volume imaging, laparoscopies were required less often. 3D-US diagnoses as judged by intraoperative findings were correct in 100 % of cases, while the MRI diagnoses in the same group were correct in only 7/13 cases. Conclusion: Since the introduction of volume imaging (MRI, later 3 D-US), laparoscopy during hysteroscopic septum resection was not necessary in the majority of cases. 3D-US brings the diagnostics of uterine anomalies back into the hands of the gynecologist and can provide the gynecological surgeon with a higher subjective degree of certainty during operative hysteroscopy.
Resumo:
Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.
Resumo:
We report the fabrication, functionalization and testing of microdevices for cell culture and cell traction force measurements in three-dimensions (3D). The devices are composed of bent cantilevers patterned with cell-adhesive spots not lying on the same plane, and thus suspending cells in 3D. The cantilevers are soft enough to undergo micrometric deflections when cells pull on them, allowing cell forces to be measured by means of optical microscopy. Since individual cantilevers are mechanically independent of each other, cell traction forces are determined directly from cantilever deflections. This proves the potential of these new devices as a tool for the quantification of cell mechanics in a system with well-defined 3D geometry and mechanical properties.