156 resultados para validation of methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Improved Limb Atmospheric Spectrometer-II (ILAS-II), the Polar Ozone and Aerosol Measurement (POAM III) instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA), the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B), the Airborne Microwave Stratospheric Observing System (AMSOS), the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B), the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH). For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indication of a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. The results of χ2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes errors due to uncertainties in spectrally interfering species and where good coincidences were found, the χ2 values found are in the expected range or even below. This suggests that there is no evidence of systematically underestimated MIPAS random errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichinellosis is a zoonotic disease in humans caused by Trichinella spp. According to international regulations and guidelines, serological surveillance can be used to demonstrate the absence of Trichinella spp. in a defined domestic pig population. Most enzyme-linked immunosorbent assay (ELISA) tests presently available do not yield 100% specificity, and therefore, a complementary test is needed to confirm the diagnosis of any initial ELISA seropositivity. The goal of the present study was to evaluate the sensitivity and specificity of a Western Blot assay based on somatic Trichinella spiralis muscle stage (L1) antigen using Bayesian modeling techniques. A total of 295 meat juice and serum samples from pigs negative for Trichinella larvae by artificial digestion, including 74 potentially cross-reactive sera of pigs with other nematode infections, and 93 meat juice samples from pigs infected with Trichinella larvae were included in the study. The diagnostic sensitivity and specificity of the Western Blot were ranged from 95.8% to 96.0% and from 99.5% to 99.6%, respectively. A sensitivity analysis showed that the model outcomes were hardly influenced by changes in the prior distributions, providing a high confidence in the outcomes of the models. This validation study demonstrated that the Western Blot is a suitable method to confirm samples that reacted positively in an initial ELISA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breaking synoptic-scale Rossby waves (RWB) at the tropopause level are central to the daily weather evolution in the extratropics and the subtropics. RWB leads to pronounced meridional transport of heat, moisture, momentum, and chemical constituents. RWB events are manifest as elongated and narrow structures in the tropopause-level potential vorticity (PV) field. A feature-based validation approach is used to assess the representation of Northern Hemisphere RWB in present-day climate simulations carried out with the ECHAM5-HAM climate model at three different resolutions (T42L19, T63L31, and T106L31) against the ERA-40 reanalysis data set. An objective identification algorithm extracts RWB events from the isentropic PV field and allows quantifying the frequency of occurrence of RWB. The biases in the frequency of RWB are then compared to biases in the time mean tropopause-level jet wind speeds. The ECHAM5-HAM model captures the location of the RWB frequency maxima in the Northern Hemisphere at all three resolutions. However, at coarse resolution (T42L19) the overall frequency of RWB, i.e. the frequency averaged over all seasons and the entire hemisphere, is underestimated by 28%.The higher-resolution simulations capture the overall frequency of RWB much better, with a minor difference between T63L31 and T106L31 (frequency errors of −3.5 and 6%, respectively). The number of large-size RWB events is significantly underestimated by the T42L19 experiment and well represented in the T106L31 simulation. On the local scale, however, significant differences to ERA-40 are found in the higher-resolution simulations. These differences are regionally confined and vary with the season. The most striking difference between T106L31 and ERA-40 is that ECHAM5-HAM overestimates the frequency of RWB in the subtropical Atlantic in all seasons except for spring. This bias maximum is accompanied by an equatorward extension of the subtropical westerlies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delivering cochlear implants through a minimally invasive tunnel (1.8 mm in diameter) from the mastoid surface to the inner ear is referred to as direct cochlear access (DCA). Based on cone beam as well as micro-computed tomography imaging, this in vitro study evaluates the feasibility and efficacy of manual cochlear electrode array insertions via DCA. Free-fitting electrode arrays were inserted in 8 temporal bone specimens with previously drilled DCA tunnels. The insertion depth angle, procedural time, tunnel alignment as well as the inserted scala and intracochlear trauma were assessed. Seven of the 8 insertions were full insertions, with insertion depth angles higher than 520°. Three cases of atraumatic scala tympani insertion, 3 cases of probable basilar membrane rupture and 1 case of dislocation into the scala vestibuli were observed (1 specimen was damaged during extraction). Manual electrode array insertion following a DCA procedure seems to be feasible and safe and is a further step toward clinical application of image-guided otological microsurgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ActiGraph accelerometer is commonly used to measure physical activity in children. Count cut-off points are needed when using accelerometer data to determine the time a person spent in moderate or vigorous physical activity. For the GT3X accelerometer no cut-off points for young children have been published yet. The aim of the current study was thus to develop and validate count cut-off points for young children. Thirty-two children aged 5 to 9 years performed four locomotor and four play activities. Activity classification into the light-, moderate- or vigorous-intensity category was based on energy expenditure measurements with indirect calorimetry. Vertical axis as well as vector magnitude cut-off points were determined through receiver operating characteristic curve analyses with the data of two thirds of the study group and validated with the data of the remaining third. The vertical axis cut-off points were 133 counts per 5 sec for moderate to vigorous physical activity (MVPA), 193 counts for vigorous activity (VPA) corresponding to a metabolic threshold of 5 MET and 233 for VPA corresponding to 6 MET. The vector magnitude cut-off points were 246 counts per 5 sec for MVPA, 316 counts for VPA - 5 MET and 381 counts for VPA - 6 MET. When validated, the current cut-off points generally showed high recognition rates for each category, high sensitivity and specificity values and moderate agreement in terms of the Kappa statistic. These results were similar for vertical axis and vector magnitude cut-off points. The current cut-off points adequately reflect MVPA and VPA in young children. Cut-off points based on vector magnitude counts did not appear to reflect the intensity categories better than cut-off points based on vertical axis counts alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Divalent metal ion transporter 1 (DMT1) is a proton-coupled Fe(2+) transporter that is essential for iron uptake in enterocytes and for transferrin-associated endosomal iron transport in many other cell types. DMT1 dysfunction is associated with several diseases such as iron overload disorders and neurodegenerative diseases. The main objective of the present work is to develop and validate a fluorescence-based screening assay for DMT1 modulators. We found that Fe(2+) or Cd(2+) influx could be reliably monitored in calcium 5-loaded DMT1-expressing HEK293 cells using the FLIPR Tetra fluorescence microplate reader. DMT1-mediated metal transport shows saturation kinetics depending on the extracellular substrate concentration, with a K0.5 value of 1.4 µM and 3.5 µM for Fe(2+) and Cd(2+), respectively. In addition, Cd(2+) was used as a substrate for DMT1, and we find a Ki value of 2.1 µM for a compound (2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea) belonging to the benzylisothioureas family, which has been identified as a DMT1 inhibitor. The optimized screening method using this compound as a reference demonstrated a Z' factor of 0.51. In summary, we developed and validated a sensitive and reproducible cell-based fluorescence assay suitable for the identification of compounds that specifically modulate DMT1 transport activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Identification of the ventrointermediate thalamic nucleus (Vim) in modern 3T high-field MRI for image-based targeting in deep brain stimulation (DBS) is still challenging. To evaluate the usefulness and reliability of analyzing the connectivity with the cerebellum using Q-ball-calculation we performed a retrospective analysis. Method: 5 patients who underwent bilateral implantation of electrodes in the Vim for treatment of Essential Tremor between 2011 and 2012 received additional preoperative Q-ball imaging. Targeting was performed according to atlas coordinates and standard MRI. Additionally we performed a retrospective identification of the Vim by analyzing the connectivity of the thalamus with the dentate nucleus. The exact position of the active stimulation contact in the postoperative CT was correlated with the Vim as it was identified by Q-ball calculation. Results: Localization of the Vim by analysis of the connectivity between thalamus and cerebellum was successful in all 5 patients on both sides. The average position of the active contacts was 14.6 mm (SD 1.24) lateral, 5.37 mm (SD 0.094 posterior and 2.21 mm (SD 0.69) cranial of MC. The cranial portion of the dentato-rubro-thalamic tract was localized an average of 3.38 mm (SD 1.57) lateral and 1.5 mm (SD 1.22) posterior of the active contact. Conclusions: Connectivity analysis by Q-ball calculation provided direct visualization of the Vim in all cases. Our preliminary results suggest, that the target determined by connectivity analysis is valid and could possibly be used in addition to or even instead of atlas based targeting. Larger prospective calculations are needed to determine the robustness of this method in providing refined information useful for neurosurgical treatment of tremor.