118 resultados para Vertebral Rotation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE This study aimed at assessing the cement leakage rate and the filling pattern in patients treated with vertebroplasty, kyphoplasty and stentoplasty with and without a newly developed lavage technique. STUDY DESIGN Retrospective clinical case-control study. METHODS A newly developed bipedicular lavage technique prior to cement application was applied in 64 patients (45.1 %) with 116 vertebrae, ("lavage" group). A conventional bipedicular cement injection technique was used in 78 patients (54.9 %) with 99 levels ("controls"). The outcome measures were filling patterns and leakage rates. RESULTS The overall leakage rate (venous, cortical defect, intradiscal) was 37.9 % in the lavage and 83.8 % in the control group (p < 0.001). Venous leakage (lavage 12.9 % vs. controls 31.3 %; p = 0.001) and cortical defect leakage (lavage 17.2 % vs. controls 63.3 %; p < 0.001) were significantly lower in the lavage group compared to "controls," whereas intradiscal leakages were similar in both groups (lavage 12.1 % vs. controls 15.2 %; p = 0.51). For venous leakage multivariate logistic regression analysis showed lavage to be the only independent predictor. Lavage was associated with 0.33-times (95 % CI 0.16-0.65; p = 0.001) lower likelihood for leakage in compared to controls. CONCLUSIONS Vertebral body lavage prior to cement augmentation is a safe technique to reduce cement leakage in a clinical setting and has the potential to prevent pulmonary fat embolism. Moreover, a better filling pattern can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To determine the predictive value of the vertebral trabecular bone score (TBS) alone or in addition to bone mineral density (BMD) with regard to fracture risk. METHODS Retrospective analysis of the relative contribution of BMD [measured at the femoral neck (FN), total hip (TH), and lumbar spine (LS)] and TBS with regard to the risk of incident clinical fractures in a representative cohort of elderly post-menopausal women previously participating in the Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk study. RESULTS Complete datasets were available for 556 of 701 women (79 %). Mean age 76.1 years, LS BMD 0.863 g/cm(2), and TBS 1.195. LS BMD and LS TBS were moderately correlated (r (2) = 0.25). After a mean of 2.7 ± 0.8 years of follow-up, the incidence of fragility fractures was 9.4 %. Age- and BMI-adjusted hazard ratios per standard deviation decrease (95 % confidence intervals) were 1.58 (1.16-2.16), 1.77 (1.31-2.39), and 1.59 (1.21-2.09) for LS, FN, and TH BMD, respectively, and 2.01 (1.54-2.63) for TBS. Whereas 58 and 60 % of fragility fractures occurred in women with BMD T score ≤-2.5 and a TBS <1.150, respectively, combining these two thresholds identified 77 % of all women with an osteoporotic fracture. CONCLUSIONS Lumbar spine TBS alone or in combination with BMD predicted incident clinical fracture risk in a representative population-based sample of elderly post-menopausal women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rebound-associated vertebral fractures may follow treatment discontinuation of highly potent reversible bone antiresorptives, resulting from the synergy of rapid bone resorption and accelerated microdamage accumulation in trabecular bone. INTRODUCTION The purposes of this study are to characterize rebound-associated vertebral fractures following the discontinuation of a highly potent reversible antiresorptive therapy based on clinical observation and propose a pathophysiological rationale. METHODS This study is a case report of multiple vertebral fractures early after discontinuation of denosumab therapy in a patient with hormone receptor-positive non-metastatic breast cancer treated with an aromatase inhibitor. RESULTS Discontinuation of highly potent reversible bone antiresorptives such as denosumab may expose patients to an increased fracture risk due to the joined effects of absent microdamage repair during therapy followed by synchronous excess activation of multiple bone remodelling units at the time of loss-of-effect. We suggest the term rebound-associated vertebral fractures (RVF) for this phenomenon characterized by the presence of multiple new clinical vertebral fractures, associated with either no or low trauma, in a context consistent with the presence of high bone turnover and rapid loss of lumbar spine bone mineral density (BMD) occurring within 3 to 12 months after discontinuation (loss-of-effect) of a reversible antiresorptive therapy in the absence of secondary causes of bone loss or fractures. Unlike atypical femoral fractures that emerge from failure of microdamage repair in cortical bone with long-term antiresorptive treatment, RVF originate from the synergy of rapid bone resorption and accelerated microdamage accumulation in trabecular bone triggered by the discontinuation of highly potent reversible antiresorptives. CONCLUSIONS Studies are urgently needed to i) prove the underlying pathophysiological processes suggested above, ii) establish the predictive criteria exposing patients to an increased risk of RVF, and iii) determine appropriate treatment regimens to be applied in such patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To determine the biomechanical effect of an intervertebral spacer on construct stiffness in a PVC model and cadaveric canine cervical vertebral columns stabilized with monocortical screws/polymethylmethacrylate (PMMA). STUDY DESIGN Biomechanical study. SAMPLE POPULATION PVC pipe; cadaveric canine vertebral columns. METHODS PVC model-PVC pipe was used to create a gap model mimicking vertebral endplate orientation and disk space width of large-breed canine cervical vertebrae; 6 models had a 4-mm gap with no spacer (PVC group 1); 6 had a PVC pipe ring spacer filling the gap (PCV group 2). Animals-large breed cadaveric canine cervical vertebral columns (C2-C7) from skeletally mature dogs without (cadaveric group 1, n = 6, historical data) and with an intervertebral disk spacer (cadaveric group 2, n = 6) were used. All PVC models and cadaver specimens were instrumented with monocortical titanium screws/PMMA. Stiffness of the 2 PVC groups was compared in extension, flexion, and lateral bending using non-destructive 4-point bend testing. Stiffness testing in all 3 directions was performed of the unaltered C4-C5 vertebral motion unit in cadaveric spines and repeated after placement of an intervertebral cortical allograft ring and instrumentation. Data were compared using a linear mixed model approach that also incorporated data from previously tested spines with the same screw/PMMA construct but without disk spacer (cadaveric group 1). RESULTS Addition of a spacer increased construct stiffness in both the PVC model (P < .001) and cadaveric vertebral columns (P < .001) compared to fixation without a spacer. CONCLUSIONS Addition of an intervertebral spacer significantly increased construct stiffness of monocortical screw/PMMA fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To compare biomechanical stiffness of cadaveric canine cervical spine constructs stabilized with bicortical stainless steel pins and polymethylmethacrylate (PMMA), monocortical stainless steel screws with PMMA, or monocortical titanium screws with PMMA. STUDY DESIGN Biomechanical cadaver study. ANIMALS Eighteen canine cervical vertebral columns (C2-C7) were collected from skeletally mature dogs (weighing 22-32 kg). METHODS Specimens were radiographed and examined by dual energy X-ray absorptiometry. Stiffness of the unaltered C4-C5 intervertebral motion unit was measured in extension, flexion and lateral bending using non-destructive 4-point bend testing. Specimens were then stabilized by (1) bicortical stainless steel pins/PMMA, (2) monocortical stainless steel screws/PMMA, or (3) monocortical titanium screws/PMMA. Mechanical testing was repeated and stiffness data from unaltered specimens and the 3 treatment groups were compared. RESULTS All 3 surgical methods significantly increased stiffness of the C4-C5 motion unit compared with the unaltered specimen (P < .001 for all treatments), but stiffness was not significantly different among the 3 fixation groups (P = .578). CONCLUSIONS In this model, monocortical screw fixation (with stainless steel or titanium screws) was biomechanically equivalent to bicortical fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. STUDY DESIGN In vitro imaging and anatomic study. ANIMALS Medium-sized canine cadaver vertebral columns (n=12). METHODS Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. RESULTS Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CONCLUSIONS CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CLINICAL RELEVANCE CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Vertebroplasty and balloon kyphoplasty are effective treatment options for osteoporotic vertebral compression fractures but are limited in correction of kyphotic deformity. Lordoplasty has been reported as an alternative, cost-effective, minimally invasive, percutaneous cement augmentation technique with good restoration of vertebral body height and alignment. The authors report on its clinical and radiological midterm results. METHODS A retrospective review was conducted of patients treated with lordoplasty from 2002 to 2014. Inclusion criteria were clinical and radiological follow-up evaluations longer than 24 months. Radiographs were accessed regarding initial correction and progressive loss of reduction. Complications and reoperations were recorded. Actual pain level, pain relief immediately after surgery, autonomy, and subjective impression of improvement of posture were assessed by questionnaire. RESULTS Sixty-five patients (46 women, 19 men, age range 38.9-86.2 years old) were treated with lordoplasty for 69 vertebral compression and insufficiency fractures. A significant correction of the vertebral kyphotic angle (mean 13°) and segmental kyphotic angle (mean 11°) over a mean follow-up of 33 months (range 24-108 months) was achieved (p < 0.001). On average, pain was relieved to 90% of the initial pain level. In 24% of the 65 patients a second spinal intervention was necessary: 16 distant (24.6%) and 7 adjacent (10.8%) new osteoporotic fractures, 4 instrumented stabilizations (6.2%), 1 new adjacent traumatic fracture (1.5%), and 1 distant microsurgical decompression (1.5%). Cement leakage occurred in 10.4% but was only symptomatic in 1 case. CONCLUSIONS Lordoplasty appeared safe and effective in midterm pain alleviation and restoration of kyphotic deformity in osteoporotic compression and insufficiency fractures. The outcomes of lordoplasty are consistent with other augmentation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine whether athletes differ from nonathletes regarding their mental rotation performance. Furthermore, it investigated whether athletes doing sports requiring distinguishable levels of mental rotation (orienteering, gymnastics, running), as well as varying with respect to having an egocentric (gymnastics) or an allocentric perspective (orienteering), differ from each other. Therefore, the Mental Rotations Test (MRT) was carried out with 20 orienteers, 20 gymnasts, 20 runners, and 20 nonathletes. The results indicate large differences in mental rotation performance, with those actively doing sports outperforming the nonathletes. Analyses for the specific groups showed that orienteers and gymnasts differed from the nonathletes, whereas endurance runners did not. Contrary to expectations, the mental rotation performance of gymnasts did not differ from that of orienteers. This study also revealed gender differences in favor of men. Implications regarding a differentiated view of the connection between specific sports and mental rotation performance are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies investigated solar–terrestrial responses (thermal state, O₃ , OH, H₂O) with emphasis on the tropical upper atmosphere. In this paper the Focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) are investigated to study oscillations with the Focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼64 km) during the rising sun spot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations Support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing thesi-milarity of their temporal oscillations. The H₂O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to −0.3 to −0.4, and the Phase lag is 6–10 days at 0.04 hPa. The confidence level of the correlation is ≥99%. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photo dissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC)complete our study. More periods of high common wavelet power of H₂O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level)correlations occur intermittently in the 27 and 13-day band with variable Phase lock behavior. Large Lyman-α oscillations appeared after the solar super storm in July 2012 and the H₂O oscillations show a well pronounced anticorrelation. The competition between advective transport and photo dissociation loss of mesospheric water vapor may explain the sometimes variable Phase relationship of mesospheric H₂O and solar Lyman-α oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.