110 resultados para Système de surveillance
Resumo:
Systems for the identification and registration of cattle have gradually been receiving attention for use in syndromic surveillance, a relatively recent approach for the early detection of infectious disease outbreaks. Real or near real-time monitoring of deaths or stillbirths reported to these systems offer an opportunity to detect temporal or spatial clusters of increased mortality that could be caused by an infectious disease epidemic. In Switzerland, such data are recorded in the "Tierverkehrsdatenbank" (TVD). To investigate the potential of the Swiss TVD for syndromic surveillance, 3 years of data (2009-2011) were assessed in terms of data quality, including timeliness of reporting and completeness of geographic data. Two time-series consisting of reported on-farm deaths and stillbirths were retrospectively analysed to define and quantify the temporal patterns that result from non-health related factors. Geographic data were almost always present in the TVD data; often at different spatial scales. On-farm deaths were reported to the database by farmers in a timely fashion; stillbirths were less timely. Timeliness and geographic coverage are two important features of disease surveillance systems, highlighting the suitability of the TVD for use in a syndromic surveillance system. Both time series exhibited different temporal patterns that were associated with non-health related factors. To avoid false positive signals, these patterns need to be removed from the data or accounted for in some way before applying aberration detection algorithms in real-time. Evaluating mortality data reported to systems for the identification and registration of cattle is of value for comparing national data systems and as a first step towards a European-wide early detection system for emerging and re-emerging cattle diseases.
Resumo:
We obtained partial carcass condemnation (PCC) data for cattle (2009-2010) from a Swiss slaughterhouse. Data on whole carcass condemnations (WCC) carried out at the same slaughterhouse over those years were extracted from the national database for meat inspection. We found that given the differences observed in the WCC and PCC time series, it is likely that both indicators respond to different health events in the population and that one cannot be substituted by the other. Because PCC recordings are promising for syndromic surveillance, the meat inspection database should be capable to record both WCC and PCC data in the future. However, a standardised list of reasons for PCC needs to be defined and used nationwide in all slaughterhouses.
Resumo:
Syndromic surveillance (SyS) systems currently exploit various sources of health-related data, most of which are collected for purposes other than surveillance (e.g. economic). Several European SyS systems use data collected during meat inspection for syndromic surveillance of animal health, as some diseases may be more easily detected post-mortem than at their point of origin or during the ante-mortem inspection upon arrival at the slaughterhouse. In this paper we use simulation to evaluate the performance of a quasi-Poisson regression (also known as an improved Farrington) algorithm for the detection of disease outbreaks during post-mortem inspection of slaughtered animals. When parameterizing the algorithm based on the retrospective analyses of 6 years of historic data, the probability of detection was satisfactory for large (range 83-445 cases) outbreaks but poor for small (range 20-177 cases) outbreaks. Varying the amount of historical data used to fit the algorithm can help increasing the probability of detection for small outbreaks. However, while the use of a 0·975 quantile generated a low false-positive rate, in most cases, more than 50% of outbreak cases had already occurred at the time of detection. High variance observed in the whole carcass condemnations time-series, and lack of flexibility in terms of the temporal distribution of simulated outbreaks resulting from low reporting frequency (monthly), constitute major challenges for early detection of outbreaks in the livestock population based on meat inspection data. Reporting frequency should be increased in the future to improve timeliness of the SyS system while increased sensitivity may be achieved by integrating meat inspection data into a multivariate system simultaneously evaluating multiple sources of data on livestock health.
Resumo:
Occurring for the first time in 1986 in the United Kingdom, bovine spongiform encephalopathy (BSE), the so-called “mad-cow disease”, has had unprecedented consequences in veterinary public health. The implementation of drastic measures, including the ban of meat-and-bone-meal from livestock feed and the removal of specified risk materials from the food chain has eventually resulted in a significant decline of the epidemic. The disease was long thought to be caused by a single agent, but since the introduction of immunochemical diagnostic techniques, evidence of a phenotypic variation of BSE has emerged. Reviewing the literature available on the subject, this paper briefly summarizes the current knowledge about these atypical forms of BSE and discusses the consequences of their occurrence for disease control measures.