112 resultados para Radio detectors
Resumo:
We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5×10−49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.
Resumo:
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.
Resumo:
Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.
Resumo:
The AEgIS experiment at CERN aims to perform the first direct measurement of gravitational interaction between matter and antimatter by measuring the deviation of a cold antihydrogen beam in the Earth gravitational field. The design of the experiment has been recently updated to include emulsion films as position sensitive detector. The submicrometric position accuracy of emulsions leads indeed to a significant improvement of the experimental sensitivity. We present results of preliminary tests and discuss perspectives for the final measurement.
Resumo:
A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.